Boundary-Layer Meteorology

, Volume 169, Issue 3, pp 461–482 | Cite as

Air–Sea Interaction in the Southern Ocean: Exploring the Height of the Wave Boundary Layer at the Air–Sea Interface

  • Alejandro Cifuentes-LorenzenEmail author
  • James B. Edson
  • Christopher J. Zappa
Research Article


We investigate the momentum and energy exchange across the wave boundary layer (WBL). Directly at the air–sea interface, we test three wave-growth parametrizations by comparing estimates of the wave-induced momentum flux derived from wave spectra with direct covariance estimates of the momentum flux. An exponential decay is used to describe the vertical structure of the wave-induced momentum in the atmospheric WBL through use of a decay rate, a function of the dimensionless decay rate and wavenumber (A = α k). The decay rate is varied to minimize the difference between the energy extracted from the WBL and the energy flux computed from wave spectra using our preferred wave-growth parametrization. For wave ages (i.e. the peak phase speed to atmospheric friction velocity ratio) in the range \( 15 < c_{p}/u_{*} < 35 \) we are able to balance these two estimates to within 10%. The decay rate is used to approximate the WBL height as the height to which the wave-induced flux is 0.1 of its surface value and the WBL height determined this way is found to be between 1–3 m. Finally, we define an effective phase speed with which to parametrize the energy flux for comparison with earlier work, which we ultimately attempt to parametrize as a function of wind forcing.


Air–sea interaction Effective phase speed Wave boundary layer 



This material is based upon work supported by the National Science Foundation under Grant 0647475, the National Oceanic and Atmospheric Administration under Grant NA07OAR4310084, and the NOAA Office of Climate Observations. Additional support was provided by the National Science Foundation (0647667; Christopher Zappa at Lamont Doherty Earth Observatory). This is Lamont-Doherty Earth Observatory contribution number 8219. Finally, we would like to thank the anonymous reviewers for their constructive criticism and helpful comments during the review process.


  1. Anis A, Moum JN (1995) Surface wave-turbulence interactions. Scaling Ε(z) near the sea surface. J Phys Oceanogr 25(9):2025–2045CrossRefGoogle Scholar
  2. Belcher SE, Hunt JCR (1993) Turbulent shear flow over slowly moving waves. J Fluid Mech 251:109–148. CrossRefGoogle Scholar
  3. Brumer SE, Zappa CJ, Blomquist BW, Fairall CW, Cifuentes-Lorenzen A, Edson JB, Huebert BJ (2017) Wave-related Reynolds number parameterizations of CO2 and DMS transfer velocities. Geophys Res Lett 44:9865–9875. CrossRefGoogle Scholar
  4. Burgers G, Makin VK (1993) Boundary-layer model results for wind-sea growth. J Phys Oceanogr 23:372–385CrossRefGoogle Scholar
  5. Chalikov DV (1995) The parameterization of the wave boundary layer. J Phys Oceanogr 25:1335–1349CrossRefGoogle Scholar
  6. Chalikov D, Belevich M (1993) One-dimensional theory of the wave boundary layer. Boundary-Layer Meteorol 63:65–96CrossRefGoogle Scholar
  7. Chalikov DV, Makin VK (1991) Models of the wave boundary layer. Boundary-Layer Meteorol 56(1–2):83–99CrossRefGoogle Scholar
  8. Chalikov DV, Rainchik S (2011) Coupled numerical modelling of wind and waves and the theory of the wave boundary layer. Boundary-Layer Meteorol 138(1):1–41CrossRefGoogle Scholar
  9. Cifuentes-Lorenzen A, Edson JB, Zappa CJ, Bariteau L (2013) A multisensor comparison of ocean wave frequency spectra from a research vessel during the Southern Ocean Gas Exchange Experiment. J Atmos Ocean Technol 30(12):2907–2925. CrossRefGoogle Scholar
  10. Dobson FW (1971) Measurements of atmospheric pressure on wind-generated sea waves. J Fluid Mech 48(1):91–127. CrossRefGoogle Scholar
  11. Donelan MA, Pierson WJ (1987) Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J Geophys Res 92(C5):4971–5029. CrossRefGoogle Scholar
  12. Donelan MA, Babanin AV, Young IR, Banner ML (2006) Wave-follower field measurements of the wind-input spectral function. Part II: parameterization of the wind input. J Phys Oceanogr 36(8):1672–1689CrossRefGoogle Scholar
  13. Drennan WM, Donelan MA, Terray EA, Katsaros KB (1996) Oceanic turbulence dissipation measurements in SWADE. J Phys Oceanogr 26(5):808–815. 10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2CrossRefGoogle Scholar
  14. Drennan WM, Graber HC, Hauser D, Quentin C (2003) On the wave age dependence of wind stress over pure wind seas. J Geophys Res 108(C3):8062. CrossRefGoogle Scholar
  15. Edson JB, Fairall CW (1998) Similarity Relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J Atmos Sci 55(13):2311–2328. 10.1175/1520-0469(1998)055<2311:SRITMA>2.0.CO;2CrossRefGoogle Scholar
  16. Edson JB, Crawford T, Crescenti J, Farrar T, Frew N, Gerbi G, Helmis C, Hristov TS, Khelif D, Jessup A (2007) The coupled boundary layers and air–sea transfer experiment in low winds. Bull Am Meteorol Soc 88(3):341–356CrossRefGoogle Scholar
  17. Edson JB, Fairall CW, Bariteau L, Zappa CJ, Cifuentes-Lorenzen A, McGillis WR, Pezoa S, Hare JE, Helmig D (2011) Direct covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange Experiment: wind speed dependency. J Geophys Res 116:C00F10. CrossRefGoogle Scholar
  18. Edson JB, Jampana V, Weller RA, Bigorre SP, Plueddemann AJ, Fairall CW, Miller SD, Mahrt L, Vickers D, Hersbach H (2013) On the exchange of momentum over the open ocean. J Phys Oceanogr 43(8):1589–1610. CrossRefGoogle Scholar
  19. Finnigan JJ, Einaudi F, Fua D (1984) The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer. J Atmos Sci 41(16):2409–2436. 10.1175/1520-0469(1984)041<2409:TIBAIG>2.0.CO;2CrossRefGoogle Scholar
  20. Grachev AA, Fairall CW (2001) Upward momentum transfer in the marine boundary layer. J Phys Oceanogr 31(7):1698–1711. 10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2CrossRefGoogle Scholar
  21. Grare L, Lenain L, Melville WK (2013) Wave-coherent airflow and critical layers over ocean waves. J Phys Oceanogr 43(10):2156–2172. CrossRefGoogle Scholar
  22. Hara T, Belcher SE (2004) Wind profile and drag coefficient over mature ocean surface wave spectra. J Phys Oceanogr 34(11):2345–2358. CrossRefGoogle Scholar
  23. Hare JE, Hara T, Edson JB, Wilczak JM (1997) A similarity analysis of the structure of airflow over surface waves. J Phys Oceanogr 27(6):1018–1037CrossRefGoogle Scholar
  24. Harris DL (1966) The wave-driven wind. J Atmos Sci 23:688–693. 10.1175/1520-0469(1966)023<0688:TWDW>2.0.CO;2CrossRefGoogle Scholar
  25. Hasselmann D, Bösenberg J (1991) Field measurements of wave-induced pressure over wind-sea and swell. J Fluid Mech 230(1):391–428CrossRefGoogle Scholar
  26. Ho DT, Sabine CL, Hebert D, Ullman DS, Wanninkhof R, Hamme RC, Strutton PG, Hales B, Edson JB, Hargreaves BR (2011) Southern Ocean Gas Exchange Experiment: setting the stage. J Geophys Res 116:C00F08. CrossRefGoogle Scholar
  27. Högström U, Smedman A, Sahleé E, Drennan WM, Kahma KK, Pettersson H, Zhang F (2009) The atmospheric boundary layer during swell: a field study and interpretation of the turbulent kinetic energy budget for high wave ages. J Atmos Sci 66(9):2764–2779CrossRefGoogle Scholar
  28. Högström U, Rutgersson A, Sahlée E, Smedman A-S, Hristov TS, Drennan WM, Kahma KK (2013) Air–sea interaction features in the Baltic Sea and at a Pacific trade-wind site: an inter-comparison study. Boundary-Layer Meteorol 147:139–163. CrossRefGoogle Scholar
  29. Högström U, Sahlée E, Smedman A-S, Rutgersson A, Nilsson E, Kahma KK, Drennan WM (2015) Surface stress over the ocean in swell-dominated conditions during moderate winds. J Atmos Sci 72(12):4777–4795. CrossRefGoogle Scholar
  30. Hristov TS, Miller SD, Friehe CA (2003) Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature 422(6927):55–58. CrossRefGoogle Scholar
  31. Janssen PAEM (1989) Wave-induced stress and the drag of air-flow over sea waves. J Phys Oceanogr 19(6):745–754. 10.1175/1520-0485(1989)019<0745:WISATD>2.0.CO;2CrossRefGoogle Scholar
  32. Janssen PAEM (1991) Quasi-linear theory of wind-wave generation applied to wave forecasting. J Phys Oceanogr 21(11):1631–1642. 10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2CrossRefGoogle Scholar
  33. Janssen PAEM (1999) On the effect of ocean waves on the kinetic energy balance and consequences for the inertial dissipation technique. J Phys Oceanogr 29(3):530–534. 10.1175/1520-0485(1999)029<0530:OTEOOW>2.0.CO;2CrossRefGoogle Scholar
  34. Kudryavtsev VN, Makin VK (2001) The impact of air-flow separation on the drag of the sea surface. Boundary-Layer Meteorol 98(1):155–171CrossRefGoogle Scholar
  35. Lighthill MJ (1962) Physical interpretation of the mathematical theory of wave generation by wind. J Fluid Mech 14(3):385–398. CrossRefGoogle Scholar
  36. Lombardo CP, Gregg MC (1989) Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J Geophys Res 94(C5):6273–6284. CrossRefGoogle Scholar
  37. Makin VK, Kudryavtsev VN (1999) Coupled sea surface-atmosphere model: 1. Wind over waves coupling. J Geophys Res 104(C4):7613–7623CrossRefGoogle Scholar
  38. Makin VK, Mastenbroek C (1996) Impact of waves on air-sea exchange of sensible heat and momentum. Boundary-Layer Meteorol 79:279–300CrossRefGoogle Scholar
  39. Makin VK, Kudryavtsev VN, Mastenbroek C (1995) Drag of the sea surface. Boundary-Layer Meteorol 73(1):159–182. CrossRefGoogle Scholar
  40. Mastenbroek C, Makin VK, Garat MH, Giovanangeli JP (1996) Experimental evidence of the rapid distortion of turbulence in the air flow over water waves. J Fluid Mech 318(1):273–302CrossRefGoogle Scholar
  41. McBean GA, Elliott JA (1975) The vertical transports of kinetic energy by turbulence and pressure in the boundary layer. J Atmos Sci 32:753–766CrossRefGoogle Scholar
  42. Miles JW (1957) On the generation of surface waves by shear flows. J Fluid Mech 3(02):185–204. CrossRefGoogle Scholar
  43. Monin AS, Yaglom AM (1975) Statistical fluid mechanics: mechanics of turbulence. MIT Press, CambridgeGoogle Scholar
  44. Plant WJ (1982) A relationship between wind stress and wave slope. J Geophys Res Oceans 87(C3):1961–1967CrossRefGoogle Scholar
  45. Rieder KF, Smith JA (1998) Removing wave effects from the wind stress vector. J Geophys Res Oceans 103(C1):1363–1374. CrossRefGoogle Scholar
  46. Scully ME, Trowbridge JH, Fisher AW (2016) Observations of the transfer of energy and momentum to the oceanic surface boundary layer beneath breaking waves. J Phys Oceanogr 46(6):1823–1837CrossRefGoogle Scholar
  47. Smedman A-S, Högström U, Sahleé E, Drennan WM, Kahma KK, Pettersson H, Zhang F (2009) Observational study of marine atmospheric boundary layer characteristics during swell. J Atmos Sci 66(9):2747–2763. CrossRefGoogle Scholar
  48. Snyder RL, Dobson FW, Elliott JA, Long RB (1981) Array measurements of atmospheric pressure fluctuations above surface gravity waves. J Fluid Mech 102:1–59. CrossRefGoogle Scholar
  49. Sullivan PP, Edson JB, Hristov T, McWilliams JC (2008) Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J Atmos Sci 65(4):1225–1245CrossRefGoogle Scholar
  50. Terray EA, Donelan MA, Agrawal YC, Drennan WM, Kahma KK, Williams AJ, Hwang PA, Kitaigorodskii SA (1996) Estimates of kinetic energy dissipation under breaking waves. J Phys Oceanogr 26(5):792–807. 10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2CrossRefGoogle Scholar
  51. Weber JEH (2008) A note on mixing due to surface wave breaking. J Geophys Res 113(C11):C11009. CrossRefGoogle Scholar
  52. Wetzel S (1996) An investigation of wave-induced momentum flux through phase averaging of open ocean wind and wave fields. Thesis, Massachusetts Institute of Technology, Massachusetts, USAGoogle Scholar
  53. Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90(C5):8995–9005. CrossRefGoogle Scholar
  54. Wu L, Rutgersson A, Nilsson E (2017) Atmospheric Boundary layer turbulence closure scheme for wind-following swell conditions. J Atmos Sci 74(7):2363–2382. CrossRefGoogle Scholar
  55. Wyngaard JC, Coté OR (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28(2):190–201CrossRefGoogle Scholar
  56. Zappa CJ, Farrar JT, Straneo F, Moffat CF (2012) Observations of upper-ocean turbulence during the VOCALS Experiment. Ocean Sciences Meeting, American Geophysical Union, 20–25 February 2012, Salt Lake City, UT, USAGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Marine SciencesUniversity of ConnecticutStorrsUSA
  2. 2.Applied Ocean Physics, and EngineeringWoods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.Ocean and Climate Physics, Lamont-Doherty Earth ObservatoryColumbia UniversityNew YorkUSA

Personalised recommendations