Boundary-Layer Meteorology

, Volume 167, Issue 3, pp 399–420 | Cite as

Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

  • Rey DeLeon
  • Micah Sandusky
  • Inanc Senocak
Research Article


We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin–Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.


Complex terrain Immersed-boundary method Large-eddy simulation Turbulence Wind energy 



This material is based upon work supported by the National Science Foundation under Grant Nos. 1056110 and 1229709. The first author would like to acknowledge the University of Idaho President’s Doctoral Scholars Award. We thank Prof. Ralph Budwig of the University of Idaho for helpful discussions and his continuous mentorship.


  1. Anderson W (2013) An immersed boundary method wall model for high-reynolds-number channel flow over complex topography. Int J Numer Methods Fluids 71(12):1588–1608CrossRefGoogle Scholar
  2. Anderson W, Meneveau C (2010) A large-eddy simulation model for boundary-layer flow over surfaces with horizontally resolved but vertically unresolved roughness elements. Boundary-Layer Meteorol 137(3):397–415CrossRefGoogle Scholar
  3. Bechmann A, Sørensen N, Berg J, Mann J, Réhoré PE (2011) The Bolund experiment, part II: blind comparison of microscale flow models. Boundary-Layer Meteorol 141:245–271CrossRefGoogle Scholar
  4. Benocci C, Pinelli A (1990) The role of the forcing term in the large eddy simulation of equilibrium channel flow. In: Rodi W, Ganic E (eds) Engineering turbulence modeling and experiments. Elsevier, New York, pp 287–296Google Scholar
  5. Berg J, Mann J, Bechmann A, Courtney M, Jørgensen H (2011) The Bolund experiment, part I: flow over a steep, three-dimensional hill. Boundary-Layer Meteorol 141:219–243CrossRefGoogle Scholar
  6. Bhaganagar K, Kim J, Coleman G (2004) Effect of roughness on wall-bounded turbulence. Flow Turbul Combust 72(2–4):463–492CrossRefGoogle Scholar
  7. Chang PH, Liao C, Hsu HW, Liu SH, Lin CA (2014) Simulations of laminar and turbulent flows over periodic hills with immersed boundary method. Comput Fluid 92:233–243CrossRefGoogle Scholar
  8. Chester S, Meneveau C, Parlange M (2007) Modeling turbulent flow over fractal trees with renormalized numerical simulation. J Comput Phys 225(1):427–448CrossRefGoogle Scholar
  9. Choi JI, Oberoi RC, Edwards JR, Rosati JA (2007) An immersed boundary method for complex incompressible flows. J Comput Phys 224(2):757–784CrossRefGoogle Scholar
  10. Chow F, Street R (2009) Evaluation of turbulence closure models for large-eddy simulation over complex terrain: flow over Askervein hill. J Appl Meteorol Clim 48(5):1050–1065CrossRefGoogle Scholar
  11. Conan B, Chaudhari A, Aubrun S, van Beeck J, Hämäläinen J, Hellsten A (2016) Experimental and numerical modelling of flow over complex terrain: the Bolund hill. Boundary-Layer Meteorol 158(2):183–208CrossRefGoogle Scholar
  12. Cristallo A, Verzicco R (2006) Combined immersed boundary/large-eddy-simulations of incompressible three dimensional complex flows. Flow Turbul Combust 77(1–4):3–26CrossRefGoogle Scholar
  13. DeLeon R, Jacobsen D, Senocak I (2013) Large-eddy simulations of turbulent incompressible flows on GPU clusters. Comput Sci Eng 15(1):26–33CrossRefGoogle Scholar
  14. Diebold M, Higgins C, Fang J, Bechmann A, Parlange MB (2013) Flow over hills: a large-eddy simulation of the Bolund case. Boundary-Layer Meteorol 148(1):177–194CrossRefGoogle Scholar
  15. Fadlun E, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60CrossRefGoogle Scholar
  16. Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207(2):457–492CrossRefGoogle Scholar
  17. Golaz JC, Wang S, Doyle J, Schmidt J (2005) COAMPS®-LES: model evaluation and analysis of second-and third-moment vertical velocity budgets. Boundary-Layer Meteorol 116(3):487–517CrossRefGoogle Scholar
  18. Golaz J, Doyle J, Wang S (2009) One-way nested large-eddy simulation over the Askervein Hill. J Adv Model Earth Syst. Google Scholar
  19. Grötzbach G (1987) Direct numerical and large eddy simulation of turbulent channel flows. In: Cheremisinoff NP (ed) Encyclopedia of fluid mechanics. West Orange, New Jersey, pp 1337–1391Google Scholar
  20. Iaccarino G, Verzicco R (2003) Immersed boundary technique for turbulent flow simulations. Appl Mech Rev 56(3):331–347CrossRefGoogle Scholar
  21. Jackson P, Hunt J (1975) Turbulent wind flow over a low hill. Q J R Meteorol Soc 101(430):929–955CrossRefGoogle Scholar
  22. Jacobsen DA, Senocak I (2011) A full-depth amalgamated parallel 3D geometric multigrid solver for GPU clusters. In: 49th AIAA aerospace science meetingGoogle Scholar
  23. Jacobsen D, Senocak I (2013) Multi-level parallelism for incompressible flow computations on GPU clusters. Parallel Comput 39(1):1–20CrossRefGoogle Scholar
  24. Jafari S, Chokani N, Abhari RS (2012) An immersed boundary method for simulation of wind flow over complex terrain. J Sol Energ-T ASME 134(1):011006CrossRefGoogle Scholar
  25. Ji C, Munjiza A, Williams J (2012) A novel iterative direct-forcing immersed boundary method and its finite volume applications. J Comput Phys 231(4):1797–1821CrossRefGoogle Scholar
  26. Lee L, LeVeque RJ (2003) An immersed interface method for incompressible Navier–Stokes equations. SIAM J Sci Comput 25(3):832–856CrossRefGoogle Scholar
  27. Leveque R, Li Z (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31(4):1019–1044CrossRefGoogle Scholar
  28. Lopes AS, Palma J, Castro F (2007) Simulation of the Askervein flow. Part 2: large-eddy simulations. Boundary-Layer Meteorol 125(1):85–108CrossRefGoogle Scholar
  29. Marusic I, Kunkel GJ, Porté-Agel F (2001) Experimental study of wall boundary conditions for large-eddy simulation. J Fluid Mech 446:309–320Google Scholar
  30. Meneveau C, Lund T, Cabot W (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–85CrossRefGoogle Scholar
  31. Mickle R, Cook N, Hoff A, Jensen N, Salmon J, Taylor P, Tetzlaff G, Teunissen H (1988) The Askervein Hill project: vertical profiles of wind and turbulence. Boundary-Layer Meteorol 43(1–2):143–169CrossRefGoogle Scholar
  32. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261CrossRefGoogle Scholar
  33. Mohd-Yusof J (1997) Combined immersed boundary/B-spline methods for simulations of flow in complex geometries. In: Annual research briefs, Center for Turbulence Research, NASA-Ames/Stanford UniversityGoogle Scholar
  34. Munters W, Meneveau C, Meyers J (2016) Shifted periodic boundary conditions for simulations of wall-bounded turbulent flows. Phys Fluids 28(2):025,112CrossRefGoogle Scholar
  35. Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25(3):220–252CrossRefGoogle Scholar
  36. Pielke RA (2013) Mesoscale meteorological modeling, 3rd edn. Academic Press, New YorkGoogle Scholar
  37. Pope SB (2000) Turbulent flows. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  38. Porté-Agel F, Meneveau C, Parlange MB (2000) A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415:261–284CrossRefGoogle Scholar
  39. Prandtl L (1925) Bericht über die Entsteung der Turbulenz. Z Angew Math Mech 5:136–139Google Scholar
  40. Roman F, Armenio V, Fröhlich J (2009) A simple wall-layer model for large eddy simulation with immersed boundary method. Phys Fluids 21(10):101,701CrossRefGoogle Scholar
  41. Salmon J, Bowen A, Hoff A, Johnson R, Mickle R, Taylor P, Tetzlaff G, Walmsley J (1988) The Askervein Hill project: mean wind variations at fixed heights above ground. Boundary-Layer Meteorol 43(3):247–271CrossRefGoogle Scholar
  42. Schumann U (1975) Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J Comput Phys 18(4):376–404CrossRefGoogle Scholar
  43. Senocak I, Ackerman A, Stevens D, Mansour N (2004) Topography modeling in atmospheric flows using the immersed boundary method. In: Annual research briefs, Center for Turbulence Research, NASA-Ames/Stanford UniversityGoogle Scholar
  44. Senocak I, Ackerman A, Kirkpatrick M, Stevens D, Mansour N (2007) Study of near-surface models for large-eddy simulations of a neutrally stratified atmospheric boundary layer. Boundary-Layer Meteorol 124:405–424CrossRefGoogle Scholar
  45. Senocak I, Sandusky M, DeLeon R, Wade D, Felzien K, Budnikova M (2015) An immersed boundary geometric preprocessor for arbitrarily complex terrain and geometry. J Atmos Ocean Tech 32(11):2075–2087CrossRefGoogle Scholar
  46. Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid-structure interaction. Prog Aerosp Sci 65:1–21CrossRefGoogle Scholar
  47. Taylor P, Teunissen H (1985) The Askervein Hill project: report on the September/October 1983, main field experiment. Technical report, Canadian Meteorological Services Research BranchGoogle Scholar
  48. Taylor P, Teunissen H (1987) The Askervein Hill project: overview and background data. Boundary-Layer Meteorol 39(1–2):15–39CrossRefGoogle Scholar
  49. Tessicini F, Iaccarino G, Fatica M, Wang M, Verzicco R (2002) Wall modeling for large-eddy simulation using an immersed boundary method. In: Annual research briefs, Stanford University Center for Turbulence Research, Stanford, CA, pp 181–187Google Scholar
  50. Thibault JC, Senocak I (2012) Accelerating incompressible flow computations with a Pthreads-CUDA implementation on small-footprint multi-GPU platforms. J Supercomput 59:693–719CrossRefGoogle Scholar
  51. Tseng YH, Ferziger JH (2003) A ghost-cell immersed boundary method for flow in complex geometry. J Comput Phys 192(2):593–623CrossRefGoogle Scholar
  52. Umphrey C, DeLeon R, Senocak I (2017) Direct numerical simulation of turbulent katabatic slope flows with an immersed boundary method. Boundary-Layer Meteorol 164(3):367–382CrossRefGoogle Scholar
  53. Verzicco R, Mohd-Yusof J, Orlandi P, Haworth D (2000) Large eddy simulation in complex geometric configurations using boundary body forces. AIAA J 38:427–433CrossRefGoogle Scholar
  54. Vuorinen V, Chaudhari A, Keskinen JP (2015) Large-eddy simulation in a complex hill terrain enabled by a compact fractional step OpenFOAM® solver. Adv Eng Softw 79:70–80CrossRefGoogle Scholar
  55. Walmsley J, Taylor P (1996) Boundary-layer flow over topography: impacts of the Askervein study. Boundary-Layer Meteorol 78:291–320CrossRefGoogle Scholar
  56. Xue M, Wang D, Gao J, Brewster K, Droegemeier K (2003) The advanced regional prediction system (ARPS), storm-scale numerical weather prediction and data assimilation. Meteorol Atmos Phys 82(1):139–170CrossRefGoogle Scholar
  57. Ye T, Mittal R, Udaykumar H, Shyy W (1999) An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries. J Comp Phys 156(2):209–240CrossRefGoogle Scholar
  58. Yeow T, Cuerva-Tejero A, Perez-Alvarez J (2015) Reproducing the bolund experiment in wind tunnel. Wind Energy 18(1):153–169Google Scholar
  59. Yuan J, Piomelli U (2014a) Estimation and prediction of the roughness function on realistic surfaces. J Turbul 15(6):350–365CrossRefGoogle Scholar
  60. Yuan J, Piomelli U (2014b) Numerical simulations of sink-flow boundary layers over rough surfaces. Phys Fluid 26(1):015,113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Boise State UniversityBoiseUSA
  2. 2.University of IdahoMoscowUSA
  3. 3.University of PittsburghPittsburghUSA

Personalised recommendations