Advertisement

Measurement-Based Numerical Study of the Effects of Realistic Land Topography and Stratification on the Coastal Marine Atmospheric Surface Layer

  • Zixuan Yang
  • Antoni Calderer
  • Sida He
  • Fotis Sotiropoulos
  • Raghavendra Krishnamurthy
  • Laura S. Leo
  • Harindra J. S. Fernando
  • Christopher M. Hocut
  • Lian ShenEmail author
Research Article
  • 46 Downloads

Abstract

Large-eddy simulations are used to investigate the effects of coastal topography and atmospheric stratification on the coastal marine atmospheric surface layer at the Field Research Facility in Duck, North Carolina, USA. Field measurements obtained from the CASPER-EAST intensive field campaign in autumn 2015 are used to determine the inlet and lower boundary conditions. The simulations are performed using the in-house Virtual Flow Simulator code, with the simulated mean streamwise velocity component, mean temperature, Reynolds shear stress, and turbulent heat flux, shown to be in good agreement with measurements. In the coastal area, the complex coastal topography leads to an enhancement of the Reynolds shear stress for both onshore and offshore flows, while the effect of atmospheric stratification on the momentum transfer is less significant than the topography. In contrast to the momentum flux, the heat flux is influenced by both the coastal topography and stratification. For onshore flow and stable stratification, the heat flux is significantly increased near the sand dune due to the enhanced turbulence and vertical temperature gradient. For onshore flow and unstable stratification, the strong turbulent mixing tends to enhance the heat flux, but is suppressed by the reduced vertical temperature gradient, such that the magnitude of the turbulent heat flux remains almost unchanged in comparison with the upstream flow. For offshore flow in both stable and unstable stratification, the heat flux is enhanced due to the flow separation at the sand dune.

Keywords

Atmospheric surface layer Coastal area Flow separation Coastal topography Large-eddy simulation 

Notes

Acknowledgements

This research is supported by the Office of Naval Research as part of the Coastal Air–Sea Process and Electromagnetic Research (CASPER) project under its Multidisciplinary University Research Initiative (MURI) program managed by Dr. Daniel Eleuterio and Dr. Steven Russell. The simulations in this work used the computational resources available during the Coastal Land–Air–Sea Interactions (CLASI) project sponsored by Office of Naval Research managed by Dr. Reginald Beach.

References

  1. Alappattu DP, Wang Q, Yamaguchi R, Lind RJ, Reynolds M, Christman AJ (2017) Warm layer and cool skin corrections for bulk water temperature measurements for air–sea interaction studies. J Geophys Res 122(C8):6470–6481.  https://doi.org/10.1002/2017JC012688 CrossRefGoogle Scholar
  2. Andreas EL (2002) Parameterizaing scalar transfer over snow and ice: a review. J Hydrometeorol 3(4):417–432.  https://doi.org/10.1175/1525-7541(2002)003003%3c0417:PSTOSA$gt;2.0.CO;2 CrossRefGoogle Scholar
  3. Angelidis S, Chawdhary F, Sotiropoulos F (2016) Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows. J Comput Phys 325:272–300.  https://doi.org/10.1016/j.jcp.2016.08.028 CrossRefGoogle Scholar
  4. Antonia RA, Krishnamoorthy LV, Fulachier L (1988) Correlation between the longitudinal velocity fluctuation and temperature fluctuation in the near-wall region of a turbulent boundary layer. Int J Heat Mass Transf 31:723–730.  https://doi.org/10.1016/0017-9310(88)90130-5 CrossRefGoogle Scholar
  5. Balay S, Gropp WD, McInnes LC, Smith BF (1997) Efficient management of parallelism in object oriented numerical software libraries. In: Arge E, Bruaset AM, Langtangen HP (eds) Modern software tools in scientific computing. Birkhäuser Press, Basel, pp 163–202CrossRefGoogle Scholar
  6. Bou-Zeid E, Meneveau C, Parlange M (2005) A scale-dependent Lagrangian dyanmic model for large eddy simulation of complex turbulent flows. Phys Fluids 17:025105.  https://doi.org/10.1063/1.1839152 CrossRefGoogle Scholar
  7. Breuer M, Peller N, Rapp CH, Manhart M (2009) Flow over periodic hills: numerical and experimental study in a wide range of Reynolds numbers. Comput Fluids 38:433–457.  https://doi.org/10.1016/j.compfluid.2008.05.002 CrossRefGoogle Scholar
  8. Calaf M, Parlange MB, Meneveau C (2011) Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers. Phys Fluids 23:126603.  https://doi.org/10.1063/1.3663376 CrossRefGoogle Scholar
  9. Calderer A, Guo X, Shen L, Sotiropoulos F (2018) Fluid-structure interaction simulation of floating strucutres interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines. J Comput Fluids 355:144–175.  https://doi.org/10.1016/j.jcp.2017.11.006 Google Scholar
  10. Calhoun R, Heap R, Princevac M, Newsom R, Fernando H, Ligon D (2006) Virtual towers using coherent Doppler lidar during the joint urban 2003 dispersion experiment. J Appl Meteorol Clim 45(8):1116–1126.  https://doi.org/10.1175/JAM2391.1 CrossRefGoogle Scholar
  11. Charnock H (1955) Wind stress on a water surface. Q J R Meteorol Soc 81:639–640.  https://doi.org/10.1002/qj.49708135027 CrossRefGoogle Scholar
  12. Choi HH, Nguyen VT, Nguyen J (2016) Numerical investigation of backward facing step flow over various step angles. Procedia Eng 154:420–425.  https://doi.org/10.1016/j.proeng.2016.07.508 CrossRefGoogle Scholar
  13. Fang X, Yang Z, Wang B-C, Tachie MF, Bergstrom DJ (2017) Large-eddy simulation of turbulent flow and structures in a square duct roughened with perpendicular and V-shaped ribs. Phys Fluids 29:065110.  https://doi.org/10.1063/1.4985715 CrossRefGoogle Scholar
  14. Fröhlich J, Mellen CP, Rodi W, Temmerman L, Leschziner MA (2005) Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J Fluid Mech 526:19–66.  https://doi.org/10.1017/S0022112004002812 CrossRefGoogle Scholar
  15. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, p 49Google Scholar
  16. Ge L, Sotiropoulos F (2007) A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225:1782–1809.  https://doi.org/10.1016/j.jcp.2007.02.017 CrossRefGoogle Scholar
  17. Geernaert GL (2002) On extending the flux-profile similarity theory to include quasi-homogeneous conditions in the marine atmospheric surface layer. Boundary-Layer Meteorol 105(3):433–450.  https://doi.org/10.1023/A:1020307703242 CrossRefGoogle Scholar
  18. Geernaert GL (2010) Normalizing air–sea flux coefficients for horizontal homogeneity, stationarity, and neutral stratification. J Phys Oceanogr 40(9):2148–2158.  https://doi.org/10.1175/2010JPO4407.1 CrossRefGoogle Scholar
  19. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgridscale eddy viscosity model. Phy Fluids A 3(7):1760–1765.  https://doi.org/10.1063/1.857955 CrossRefGoogle Scholar
  20. Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207:457–492.  https://doi.org/10.1016/j.jcp.2005.01.020 CrossRefGoogle Scholar
  21. Gilmanov A, Sotiropoulos F, Balaras E (2003) A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids. J Comput Phys 191:660–669.  https://doi.org/10.1016/S0021-9991(03)00321-8 CrossRefGoogle Scholar
  22. Grachev AA, Bariteau L, Fairall CW, Hare JE, Helmig D, Hueber J, Lang EK (2011) Turbulent fluxes and transfer of trace gases from ship-based measurements during TexAQS 2006. J Geophys Res 116(D13):D13–110.  https://doi.org/10.1029/2010JD015502 CrossRefGoogle Scholar
  23. Grachev AA, Leo LS, Fernando HJS, Fairall CW, Creegan E, Blomquist BW, Christman AJ, Hocut CM (2018) Air-sea/land interaction in the coastal zone. Boundary-Layer Meteorol 167:181–210.  https://doi.org/10.1007/s10546-017-0326-2 Google Scholar
  24. Hodur RM (1997) The Naval Research Laboratory’s coupled ocean/atmosphere mesoscale prediction system (COAMPS). Mon Weather Rev 125:1414–1430.  https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2
  25. Hogan TF, Liu M, Ridout JA, Peng MS, Whitcomb TR, Ruston BC, Reynolds CA, Eckermann SD, Moskaitis JR, Baker NL (2014) The navy global environmental model. Oceanography 27:116–125CrossRefGoogle Scholar
  26. Jovic S, Driver DM (1994) Backward-facing step measurement at low Reynolds number, \(Re_h=5000\). NASA Technical Memorial p 108807Google Scholar
  27. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurements. Oxford University Press, OxfordGoogle Scholar
  28. Kang S, Sotiropoulos F (2011) Flow phenomena and mechanisms in a field-scale experimental meandering channel with a pool-riffle sequence: insights gained via numerical simulation. J Geophys Res 116(F03):011.  https://doi.org/10.1029/2010JF001814 Google Scholar
  29. Kim J, Moin P (1985) Application of a fractional-step method to incompressible Navier–Stokes equations. J Comput Phys 59:308–323.  https://doi.org/10.1016/0021-9991(85)90148-2 CrossRefGoogle Scholar
  30. Krishnamurthy R, Calhoun R, Fernando H (2010) Large-eddy simulation-based retrieval of dissipation from coherent doppler lidar data. Boundary-Layer Meteorol 136(1):45–57.  https://doi.org/10.1007/s10546-010-9495-y CrossRefGoogle Scholar
  31. Le H, Moin P, Kim J (1997) Direct numerical simulation of turbulent flow over a backward-facing step. J Fluid Mech 330:349–374.  https://doi.org/10.1017/S0022112096003941 CrossRefGoogle Scholar
  32. Lilly DK (1992) A proposed modification of the Germano subgridscale closure method. Phy Fluids A 4:633–635.  https://doi.org/10.1063/1.858280 CrossRefGoogle Scholar
  33. MacMahan J (2017) Increased aerodynamic roughness owing to surfzone foam. J Phys Oceanogr 47:2115–2122.  https://doi.org/10.1175/JPO-D-17-0054.1 CrossRefGoogle Scholar
  34. Mahrt L (1996) The bulk aerodynamic formulation over heterogeneous surfaces. Boundary-Layer Meteorol 78(1–2):87–119.  https://doi.org/10.1007/BF00122488 CrossRefGoogle Scholar
  35. Mahrt L, Vickers D, Sun J, Crawford TL, Crescenti G, Frederickson P (2001) Surface stress in offshore flow and quasi-frictional decoupling. J Geophys Res 106(D18):20,629–20,639.  https://doi.org/10.1029/2000JD000159 CrossRefGoogle Scholar
  36. Mann J (1994) The spatial structure of neutral atmospheric surface-layer turbulence. J Fluid Mech 273:141–168.  https://doi.org/10.1017/S0022112094001886 CrossRefGoogle Scholar
  37. Mann J (1998) Wind field simulation. Prob Eng Mech 13:269–282.  https://doi.org/10.1016/S0266-8920(97)00036-2 CrossRefGoogle Scholar
  38. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261.  https://doi.org/10.1146/annurev.fluid.37.061903.175743 CrossRefGoogle Scholar
  39. Moin P, Squires K, Cabot W, Lee S (1991) A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phy Fluids A 3:2746–2757.  https://doi.org/10.1063/1.858164 CrossRefGoogle Scholar
  40. Monin AS, Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence, vol 1. MIT Press, CambridgeGoogle Scholar
  41. Ortiz-Suslow DG, Haus BK, William NJ, Laxague NJ, Reniers AJHM, Graber HC (2015) The spatial-temporal variability of air-sea momentum fluxes observed at a tidal inlet. J Geophys Res 120:660–676.  https://doi.org/10.1002/2014JC010412 CrossRefGoogle Scholar
  42. Pielke RA, Cotton WR, Walko RL, Tremback CJ, Lyons WA, Grasso LD, Nicholls ME, Moran MD, Wesley DA, Lee TJ, Copeland JH (1992) A comprehensive meteorological modeling system—RAMS. Meterol Atmos Phys 49:69–91.  https://doi.org/10.1007/BF01025401 CrossRefGoogle Scholar
  43. Piomelli U, Balaras E (2002) Wall-layer models for large-eddy simulations. Annu Rev Fluid Mech 34:349–374.  https://doi.org/10.1146/annurev.fluid.34.082901.144919 CrossRefGoogle Scholar
  44. Rasam A, Wallin S, Brethouwer G, Johansson AV (2014) Large eddy simulation of channel flow with and without periodic constrictions using the explicit algebraic subgrid-scale model. J Turbul 15:1–24.  https://doi.org/10.1080/14685248.2014.929292 CrossRefGoogle Scholar
  45. Roman F, Armenio V, Fröhlich J (2009) A simple wall-layer model for large eddy simulation with immersed boundary method. Phys Fluids 21(101):701.  https://doi.org/10.1063/1.3245294 Google Scholar
  46. Ruck B, Makiola B (1993) Flow separation over the inclined step. In: Physics of separated flows—numerical, experimental, and theoretical aspects, Vieweg\(^{+}\) Teubner Verlag, pp 47–55Google Scholar
  47. Shabani B, Nielsen P, Baldock T (2014) Direct measurements of wind stress over the surf zone. J Geophys Res Oceans 119:2949–2973.  https://doi.org/10.1002/2013JC009585 CrossRefGoogle Scholar
  48. Shamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note pp TN–4751STR, 125 ppGoogle Scholar
  49. Simpson RL (1989) Turbulent boundary-layer separation. Ann Rev Fluid Mech 21:205–232.  https://doi.org/10.1146/annurev.fl.21.010189.001225 CrossRefGoogle Scholar
  50. Skyllingstad ED, Samelson RM, Mahrt L, Barbour P (2005) A numerical modeling study of warm offshore flow over cool water. Mon Weather Rev 133:345–361.  https://doi.org/10.1175/MWR-2845.1 CrossRefGoogle Scholar
  51. Smedman AS, Bergström H, Högström U (1995) Spectra, variances and length scales in a marine stable boundary layer dominated by a low level jet. Boundary-Layer Meteorol 76(3):211–232.  https://doi.org/10.1007/BF00709352 CrossRefGoogle Scholar
  52. Smedman AS, Bergström H, Grisogono B (1997) Evolution of stable internal boundary layer over a cold sea. J Geophys Res 102(C1):1091–1099.  https://doi.org/10.1029/96JC02782 CrossRefGoogle Scholar
  53. Sorbjan Z (1989) Structure of the atmospheric boundary layer. Prentice-Hall, Englewood Cliffs, p 67Google Scholar
  54. Stull RB (1988) An introduction to boundary-layer meteorology. Kluwer Acedemic Publishers, Boston, p 357CrossRefGoogle Scholar
  55. Vickers D, Mahrt L (1997) Fetch limited drag coefficients. Boundary-Layer Meteorol 85(1):53–79.  https://doi.org/10.1023/A:1000472623187 CrossRefGoogle Scholar
  56. Vickers D, Mahrt L, Sun J, Crawford T (2001) Structure of offshore flow. Mon Weather Rev 129(5):1251–1258.  https://doi.org/10.1175/1520-0493(2001)129<1251:SOOF>2.0.CO;2
  57. Wang Q, Alappattu DP, Billingsley B, Blomquist B, Burkholder RJ, Christman AJ, Creegan ED, dePaolo T, Eleuterio DP, Fernando HJS, Franklin KB, Grachev AA, Haack T, Hanley TR, Hocut CM, Holt TR, Horgan K, Jonsson HH, Hale RA, Kalogiros JA, Khelif D, Leo LS, Lind RJ, Lozovatsky I, Panella-Morato J, Mukherjee S, Nuss WA, Pozderac J, Rogers LT, Savelyev I, Savige DK, Shearman RK, Shen L, Terrill E, Ulate AM, Wendt RT, Wiss R, Woods RK, Xu L, Yamaguchi RT, Yardim C (2018) CASPER: coupled air–sea processes and eletromagnetic (EM) wave ducting research. Bull Am Meteorol Soc 99(7):1449–1471.  https://doi.org/10.1175/BAMS-D-16-0046.1 CrossRefGoogle Scholar
  58. Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, New YorkCrossRefGoogle Scholar
  59. Yang X, Kang S, Sotiropoulos F (2012) Computational study and modeling of turbine spacing effects in infinite alighed wind farms. Phys Fluids 24:115107.  https://doi.org/10.1063/1.4767727 CrossRefGoogle Scholar
  60. Yang X, Sotiropoulos F, Conzemius F, Wachtler JN, Strong MB (2015a) Large eddy simulation of turbulent flow past wind turbines/farms: the Virtual Wind Simulator (VWiS). Wind Energy 18:2025–2045.  https://doi.org/10.1002/we.1802 CrossRefGoogle Scholar
  61. Yang X, Howard KB, Guala M, Sotiropoulos F (2015b) Effects of a three-dimensional hill on the wake characteristics of a model wind turbine. Phys Fluids 27:025103.  https://doi.org/10.1063/1.4907685 CrossRefGoogle Scholar
  62. Yang X, Hong J, Barone M, Sotiropoulos F (2016) Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines. J Fluid Mech 804:90–115.  https://doi.org/10.1017/jfm.2016.503 CrossRefGoogle Scholar
  63. Yang Z, Calderer A, He S, Sotiropoulos F, Doyle JD, Flagg DD, MacMahan J, Wang Q, Haus BK, Graber HC, Shen L (2018) Numerical study on the effect of air–sea–land interaction on the atmospheric boundary layer in coastal area. Atmosphere 9:51.  https://doi.org/10.3390/atmos9020051 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zixuan Yang
    • 1
    • 2
  • Antoni Calderer
    • 1
    • 2
  • Sida He
    • 1
    • 2
  • Fotis Sotiropoulos
    • 2
    • 3
  • Raghavendra Krishnamurthy
    • 4
  • Laura S. Leo
    • 4
  • Harindra J. S. Fernando
    • 4
  • Christopher M. Hocut
    • 5
  • Lian Shen
    • 1
    • 2
    Email author
  1. 1.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.St. Anthony Falls LaboratoryUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Civil EngineeringStony Brook UniversityStony BrookUSA
  4. 4.Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameUSA
  5. 5.U.S. Army Research LaboratoryWhite Sands Missile RangeUSA

Personalised recommendations