Boundary-Layer Meteorology

, Volume 166, Issue 3, pp 449–473 | Cite as

High-Resolution Vertical Profile Measurements for Carbon Dioxide and Water Vapour Concentrations Within and Above Crop Canopies

  • Patrizia NeyEmail author
  • Alexander Graf
Research Article


We present a portable elevator-based facility for measuring \(\hbox {CO}_{2}\), water vapour, temperature and wind-speed profiles between the soil surface and the atmospheric surface layer above crop canopies. The end of a tube connected to a closed-path gas analyzer is continuously moved up and down over the profile range (in our case, approximately 2 m) while concentrations are logged at a frequency of \(20 \hbox { s}^{-1}\). Using campaign measurements in winter wheat, winter barley and a catch crop mixture (spring 2015 to autumn 2016) during different stages of crop development and different times of the day, we demonstrate a simple approach to correct for time lags, and the resulting profiles of 30-min mean mole fractions of \(\hbox {CO}_{2}\) and \(\hbox {H}_{2}\hbox {O}\) over height increments of 0.025 m. The profiles clearly show the effects of soil respiration and photosynthetic carbon assimilation, varying both during the diurnal cycle and during the growing season. Profiles of temperature and wind speed are based on a ventilated finewire thermocouple and a hot-wire anemometer, respectively. Measurements over bare soil and a short plant canopy were analyzed in the framework of Monin–Obukhov similarity theory to check the validity of the measurements and raw-data-processing approach. Derived fluxes of \(\hbox {CO}_{2}\), latent and sensible heat and momentum show good agreement with eddy-covariance measurements.


Elevator Evapotranspiration Monin–Obukhov similarity theory Respiration 



This study was financed by the German Federal Ministry of Education and Research (BMBF) in the framework of the project “IDAS-GHG” (FKZ 01LN1313A). Ancillary hardware and its maintenance was supported by TERENO and the DFG Collaborative Research Centre 32 “Patterns in Soil-Vegetation-Atmosphere Systems”. We gratefully thank Normen Hermes for developing the control electronics for the elevator system, Yannick Tolsdorf for assistance with it, Nicole Adels, Odilia Esser, Daniel Dolfus and Marius Schmidt for conducting most of the eddy covariance, chamber and PAI fieldwork and analyses and four anonymous reviewers and the editor for thorough screening of and constructive comments on the manuscript.


  1. Ahonen T, Aalto P, Rannik Ü, Kulmala M, Nilsson ED, Palmroth S, Ylitalo H, Hari P (1997) Variations and vertical profiles of trace gas and aerosol concentrations and \(\text{ CO }_2\) exchange in eastern lapland. Atmos Env 31:3351–3362CrossRefGoogle Scholar
  2. Al-Saidi A, Fukuzawa Y, Furukawa N, Ueno M, Baba S, Kawamitsu Y (2009) A system for the measurement of vertical gradients of \(\text{ CO }_2\), \(\text{ H }_2\text{ O }\) and air temperature within and above the canopy of plant. Plant Prod Sci 12:139–149CrossRefGoogle Scholar
  3. Arya PS (2001) Introduction to micrometeorology. Academic Press, San Diego, p 420Google Scholar
  4. Aubinet M, Berbigier P, Bernhofer C, Cescatti A, Feigenwinter C, Granier A, Gruenwald T, Havrankova K, Heinesch B, Longdoz B et al (2005) Comparing \(\text{ CO }_2\) storage and advection conditions at night at different carboeuroflux sites. Boundary-Layer Meteorol 116:63–93CrossRefGoogle Scholar
  5. Baghi R, Durand P, Jambert C, Jarnot C, Delon C, Serça D, Striebig N, Ferlicoq M, Keravec P (2012) A new disjunct eddy-covariance system for bvoc flux measurements-validation on \(\text{ CO }_2\) and \(\text{ H }_2\)O fluxes. Atmos Meas Tech 5:3119–3132CrossRefGoogle Scholar
  6. Billesbach DP (2011) Estimating uncertainties in individual eddy covariance flux measurements: a comparison of methods and a proposed new method. Agric For Meteorol 151:394–405CrossRefGoogle Scholar
  7. Bloom AJ, Mooney HA, Björkman O, Berry J (1980) Materials and methods for carbon dioxide and water exchange analysis. Plant Cell Environ 3:371–376CrossRefGoogle Scholar
  8. Brooks JR, Flanagan LB, Varney GT, Ehleringer JR (1997) Vertical gradients in photosynthetic gas exchange characteristics and refixation of respired \(\text{ CO }_2\) within boreal forest canopies. Tree Physiol 17:1–12CrossRefGoogle Scholar
  9. Brosy C, Krampf K, Zeeman M, Wolf B, Junkermann W, Schäfer K, Emeis S, Kunstmann H (2017) Simultaneous multicopter-based air sampling and sensing of meteorological variables. Atmos Meas Tech 10(8):2773CrossRefGoogle Scholar
  10. Buchmann N, Ehleringer JR (1998) \(\text{ CO }_2\) concentration profiles, and carbon and oxygen isotopes in \(\text{ C }_3\) and \(\text{ C }_4\) crop canopies. Agric For Meteorol 89:45–58CrossRefGoogle Scholar
  11. Businger JA, Oncley SP (1990) Flux measurement with conditional sampling. J Atmos Ocean Tech 7:349–352CrossRefGoogle Scholar
  12. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189CrossRefGoogle Scholar
  13. Denmead OT, Bradley EF (1985) Flux-gradient relationships in a forest canopy. In: The forest-atmosphere interaction, Springer, pp 421–442Google Scholar
  14. Drüe C (1996) Aufbau einer Profil-Messstation im Pflanzenbestand. Master’s thesis, Meteorologisches Institut Universität Bonn, Auf dem Hügel 20, 53121 Bonn, GermanyGoogle Scholar
  15. Eder F, Schmidt M, Damian T, Träumner K, Mauder M (2015) Mesoscale eddies affect near-surface turbulent exchange: evidence from lidar and tower measurements. J Appl Meteorol Clim 54:189–206CrossRefGoogle Scholar
  16. Euser T, Luxemburg W, Everson C, Mengistu M, Clulow A, Bastiaanssen W (2014) A new method to measure bowen ratios using high-resolution vertical dry and wet bulb temperature profiles. Hydrol and Earth Syst Sci 18:2021–2032CrossRefGoogle Scholar
  17. Finkelstein PL, Sims PF (2001) Sampling error in eddy correlation flux measurements. J Geophys Res Atmos 106:3503–3509CrossRefGoogle Scholar
  18. Foken T (2006) Angewandte Meteorologie. Mikrometeorologische Methoden, 2nd edn. Springer, Berlin, 344 ppGoogle Scholar
  19. Fotiadi AK, Lohou F, Druilhet A, Serça D, Brunet Y, Delmas R (2005a) Methodological development of the conditional sampling method. Part I: sensitivity to statistical and technical characteristics. Boundary-Layer Meteorol 114(3):615–640CrossRefGoogle Scholar
  20. Fotiadi AK, Lohou F, Druilhet A, Serça D, Said F, Laville P, Brut A (2005b) Methodological development of the conditional sampling method. Part II: quality control criteria of relaxed eddy accumulation flux measurements. Boundary-Layer Meteorol 117(3):577–603CrossRefGoogle Scholar
  21. Graf A, Weihermüller L, Huisman JA, Herbst M, Bauer J, Vereecken H (2008) Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies. Biogeosciences 5:1175–1188CrossRefGoogle Scholar
  22. Graf A, Schüttemeyer D, Geiß H, Knaps A, Möllmann-Coers M, Schween JH, Kollet S, Neininger B, Herbst M, Vereecken H (2010) Boundedness of turbulent temperature probability distributions, and their relation to the vertical profile in the convective boundary layer. Boundary-Layer Meteorol 134(3):459–486CrossRefGoogle Scholar
  23. Graf A, Herbst M, Weihermüller L, Huisman JA, Prolingheuer N, Bornemann L, Vereecken H (2012) Analyzing spatiotemporal variability of heterotrophic soil respiration at the field scale using orthogonal functions. Geoderma 181:91–101CrossRefGoogle Scholar
  24. Gryning SE, Batchvarova E, De Bruin HAR (2001) Energy balance of a sparse coniferous high-latitude forest under winter conditions. Boundary-Layer Meteorol 99:465–488CrossRefGoogle Scholar
  25. Haverd V, Cuntz M, Griffith D, Keitel C, Tadros C, Twining J (2011) Measured deuterium in water vapour concentration does not improve the constraint on the partitioning of evapotranspiration in a tall forest canopy, as estimated using a soil vegetation atmosphere transfer model. Agric For Meteorol 151:645–654CrossRefGoogle Scholar
  26. Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42:55–78CrossRefGoogle Scholar
  27. Ibrom A, Dellwik E, Flyvbjerg H, Jensen NO, Pilegaard K (2007) Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agric For Meteorol 147:140–156CrossRefGoogle Scholar
  28. Jacobs A, Van Boxel J, El-Kilani R (1994) Nighttime free convection characteristics within a plant canopy. Boundary-Layer Meteorol 71:375–391CrossRefGoogle Scholar
  29. Jäggi M, Ammann C, Neftel A, Fuhrer J (2006) Environmental control of profiles of ozone concentration in a grassland canopy. Atmos Environ 40:5496–5507CrossRefGoogle Scholar
  30. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, 289 ppGoogle Scholar
  31. Kessomkiat W, Franssen HJH, Graf A, Vereecken H (2013) Estimating random errors of eddy covariance data: an extended two-tower approach. Agric For Meteorol 171:203–219CrossRefGoogle Scholar
  32. Lenschow DH, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes and other turbulence statistics? J Atmos Ocean Technol 11:661–673CrossRefGoogle Scholar
  33. Leuning R (2000) Estimation of scalar source/sink distributions in plant canopies using lagrangian dispersion analysis: corrections for atmospheric stability and comparison with a multilayer canopy model. Boundary-Layer Meteorol 96:293–314CrossRefGoogle Scholar
  34. Lothon M, Lohou F, Pino D, Couvreux F, Pardyjak E, Reuder J, Vilà-Guerau De Arellano J, Durand P, Hartogensis O, Legain D et al (2014) The BLLAST field experiment: boundary-layer late afternoon and sunset turbulence. Atmos Chem Phys 14:10931–10960CrossRefGoogle Scholar
  35. Maitani T, Seo T (1986) A case study of temperature fluctuations within and above a wheat field before and after sunset. Boundary-Layer Meteorol 35:247–256CrossRefGoogle Scholar
  36. Mammarella I, Launiainen S, Gronholm T, Keronen P, Pumpanen J, Rannik Ü, Vesala T (2009) Relative humidity effect on the high-frequency attenuation of water vapor flux measured by a closed-path eddy covariance system. J Atmos Ocean Tech 26:1856–1866CrossRefGoogle Scholar
  37. Mauder M, Foken T (2011) Documentation and instruction manual of the eddy-covariance software package TK3, vol 46. University of Bayreuth, Department of Micrometeorology, BayreuthGoogle Scholar
  38. Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinbrecher R (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric For Meteorol 169:122–135CrossRefGoogle Scholar
  39. Mayer JC, Hens K, Rummel U, Meixner FX, Foken T (2009) Moving measurement platforms-specific challenges and corrections. Meteorol Z 18(5):477–488CrossRefGoogle Scholar
  40. Mayer JC, Bargsten A, Rummel U, Meixner FX, Foken T (2011) Distributed modified bowen ratio method for surface layer fluxes of reactive and non-reactive trace gases. Agric For Meteorol 151(6):655–668CrossRefGoogle Scholar
  41. Miyata A, Leuning R, Denmead OT, Kim J, Harazono Y (2000) Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agric For Meteorol 102:287–303CrossRefGoogle Scholar
  42. Moene AF, Michels BI (2002) Estimation of the statistical error in large eddy simulation results. American Meteorological Society, Wageningen, pp 287–288Google Scholar
  43. Montagnani L, Manca G, Canepa E, Georgieva E, Acosta M, Feigenwinter C, Janous D, Kerschbaumer G, Lindroth A, Minach L, Minerbi S, Mölder M, Pavelka M, Seufert G, Zeri M, Ziegler W (2009) A new mass conservation approach to the study of \(\text{ CO }_2\) advection in an alpine forest. J Geophys Res Atmos 114(D7):D07306Google Scholar
  44. Monteith J, Unsworth M (2013) Principles of environmental physics: plants, animals, and the atmosphere, 4th edn. Elsevier, Amsterdam, 423 ppGoogle Scholar
  45. Munger JW, Loescher HW, Luo H (2012) Measurement, tower, and site design considerations. In: Eddy covariance, Springer, pp 21–58Google Scholar
  46. Noone D, Risi C, Bailey A, Berkelhammer M, Brown D, Buenning N, Gregory S, Nusbaumer J, Schneider D, Sykes J, Vanderwende B, Wong J, Meillier Y, Wolfe D (2013) Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado. Atmos Chem Phys 13:1607–1623CrossRefGoogle Scholar
  47. Nordbo A, Kekäläinen P, Siivola E, Lehto R, Vesala T, Timonen J (2013) Tube transport of water vapor with condensation and desorption. Appl Phys Lett 102:194101CrossRefGoogle Scholar
  48. Op de Beeck M, Gielen B, Merboldt L et al. (2015) Icos protocol soil-meteorological variables, final version v3. Internal report, ICOS Ecosystem Thematic Centre, 48 ppGoogle Scholar
  49. Panofsky HA, Dutton JA (1984) Atmospheric turbulence. Models and methods for engineering applications. Wiley, New York, p 397Google Scholar
  50. Raupach MR (1989) A practical lagrangian method for relating scalar concentrations to source distributions in vegetation canopies. Q J R Meteorol Soc 115:609–632CrossRefGoogle Scholar
  51. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Gruenwald T, Havrankova K, Janous D, Knohl A, Laurela T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439CrossRefGoogle Scholar
  52. Rinne HJI, Guenther AB, Warneke C, De Gouw JA, Luxembourg SL (2001) Disjunct eddy covariance technique for trace gas flux measurements. Geophys Res Lett 28(16):3139–3142Google Scholar
  53. Santos EA, Wagner-Riddle C, Warland JS, Brown S (2011) Applying a lagrangian dispersion analysis to infer carbon dioxide and latent heat fluxes in a corn canopy. Agric For Meteorol 151:620–632CrossRefGoogle Scholar
  54. Sogachev A, Leclerc M, Karipot A, Zhang G, Vesala T (2005) Effect of clearcuts on footprints and flux measurements above a forest canopy. Agric For Meteorol 133:182–196CrossRefGoogle Scholar
  55. Thomas CK, Kennedy AM, Selker JS, Moretti A, Schroth MH, Smoot AR, Tufillaro NB, Zeeman MJ (2012) High-resolution fibre-optic temperature sensing: a new tool to study the two-dimensional structure of atmospheric surface-layer flow. Boundary-Layer Meteorol 142:177–192CrossRefGoogle Scholar
  56. Van Dijk A, Moene AF, De Bruin HAR (2004) The principles of surface flux physics: theory, practice and description of the ECPACK library. Meteorology and Air Quality Group, Wageningen University, Wageningen, p 99Google Scholar
  57. Waterhouse F (1955) Microclimatological profiles in grass cover in relation to biological problems. Q J R Meteorol Soc 81:63–71CrossRefGoogle Scholar
  58. Webster R (1997) Regression and functional relations. Eur J Soil Sci 48:557–566CrossRefGoogle Scholar
  59. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law B, Kowalski TA, Meyers M, Moncrieff J, Monson W, Rand O, Tenhunen J, Verma S, Valentini R (2002) Energy balance closure at fluxnet sites. Agric For Meteorol 113:223–243CrossRefGoogle Scholar
  60. Xu L, Matista AA, Hsiao TC (1999) A technique for measuring \(\text{ CO }_2\) and water vapor profiles within and above plant canopies over short periods. Agric For Meteorol 94:1–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Agrosphere (IBG-3), Institute of Bio- and GeosciencesJülich Research CentreJülichGermany

Personalised recommendations