Advertisement

Boundary-Layer Meteorology

, Volume 165, Issue 1, pp 161–180 | Cite as

How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?

  • Sebastian Schlögl
  • Michael Lehning
  • Kouichi Nishimura
  • Hendrik Huwald
  • Nicolas J. Cullen
  • Rebecca Mott
Research Article

Abstract

We assess sensible heat-flux parametrizations in stable conditions over snow surfaces by testing and developing stability correction functions for two alpine and two polar test sites. Five turbulence datasets are analyzed with respect to, (a) the validity of the Monin–Obukhov similarity theory, (b) the model performance of well-established stability corrections, and (c) the development of new univariate and multivariate stability corrections. Using a wide range of stability corrections reveals an overestimation of the turbulent sensible heat flux for high wind speeds and a generally poor performance of all investigated functions for large temperature differences between snow and the atmosphere above (>10 K). Applying the Monin–Obukhov bulk formulation introduces a mean absolute error in the sensible heat flux of \(6\,\hbox {W m}^{-2}\) (compared with heat fluxes calculated directly from eddy covariance). The stability corrections produce an additional error between 1 and \(5\,\hbox {W m}^{-2}\), with the smallest error for published stability corrections found for the Holtslag scheme. We confirm from previous studies that stability corrections need improvements for large temperature differences and wind speeds, where sensible heat fluxes are distinctly overestimated. Under these atmospheric conditions our newly developed stability corrections slightly improve the model performance. However, the differences between stability corrections are typically small when compared to the residual error, which stems from the Monin–Obukhov bulk formulation.

Keywords

Eddy-covariance method Monin–Obukhov bulk formulation Sensible heat flux Snow Stable boundary layer 

Notes

Acknowledgements

The work was funded by Swiss National Science Foundation (Project: Snow-atmosphere interactions driving snow accumulation and ablation in an Alpine catchment: The Dischma Experiment; SNF-Grant: 200021_150146).

References

  1. Andreas EL (1987) A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorol 38:159–184CrossRefGoogle Scholar
  2. Andreas EL (2002) Parameterizing scalar transfer over snow and ice: a review. J Hydrometeorol 3:417–432CrossRefGoogle Scholar
  3. Andreas EL, Persson POG, Jordan RE, Horst TW, Guest PS, Grachev AA, Fairall CW (2010) Parameterizing turbulent exchange over sea ice in winter. J Hydrometeorol 11(1):87–104. doi: 10.1175/2009JHM1102.1 CrossRefGoogle Scholar
  4. Arck M, Scherer D (2002) Problems in the determination of sensible heat flux over snow. Geogr Ann 84 A(3–4):157–169CrossRefGoogle Scholar
  5. Beljaars ACM, Holtslag AAM (1991) Flux parametrization over land surfaces for atmospheric models. J Appl Meteorol 30:327–341Google Scholar
  6. Blanc T (1987) Accuracy of bulk-method-determined flux, stability, and sea surface roughness. J Geophys Res Atmos 92:3867–3876CrossRefGoogle Scholar
  7. Bou-Zeid E, Higgins C, Huwald H, Meneveau C, Parlange MB (2010) Field study of the dynamics and modelling of subgridscale turbulence in a stable atmospheric surface layer over a glacier. J Fluid Mech 665:480–515CrossRefGoogle Scholar
  8. Conway JP, Cullen NJ (2016) Cloud effects on surface energy and mass balance in the ablation area of Brewster Glacier, New Zealand. Cryosphere 10(1):313–328. doi: 10.5194/tc-10-313-2016 CrossRefGoogle Scholar
  9. Cullen NJ, Steffen K (2001) Unstable near-surface boundary layer conditions in summer on top of the Greenland ice sheet. Geophys Res Lett 28:4491–4493. doi: 10.1029/2001GL013417 CrossRefGoogle Scholar
  10. Cullen NJ, Steffen K, Blanken PD (2007) Nonstationarity of turbulent heat fluxes at Summit, Greenland. Boundary-Layer Meteorol 122:439–455. doi: 10.1007/s10546-006-9112-2 CrossRefGoogle Scholar
  11. Cullen NJ, Mölg T, Conway J, Steffen K (2014) Assessing the role of sublimation in the dry snow zone of the Greenland ice sheet in a warming world. J Geophys Res Atmos 119:6563–6577. doi: 10.1002/2014JD021557 CrossRefGoogle Scholar
  12. Dadic R, Mott R, Lehning M, Carenzo M, Anderson B, Mackintosh A (2013) Sensitivity of turbulent fluxes to wind speed over snow surfaces in different climatic settings. Adv Water Resour 55:178–189CrossRefGoogle Scholar
  13. Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7:363–372CrossRefGoogle Scholar
  14. Essery R, Granger R, Pomeroy J (2006) Boundary-layer growth and advection of heat over snow and soil patches: modelling and parameterization. Hydrol Process 20:953–967CrossRefGoogle Scholar
  15. Essery R, Morin S, Lejeune Y, Menard CB (2013) A comparison of 1701 snow models using observations from an alpine site. Adv Water Resour 55:131–148CrossRefGoogle Scholar
  16. Föhn P (1973) Short term snow melt and ablation derived from heat- and mass-balance measurements. J Glaciol 12(65):275–289CrossRefGoogle Scholar
  17. Funk M (1985) Räumliche Verteilung der Massenbilanz auf dem Rhonegletscher und ihre Beziehung zu Klimaelementen. Zürcher Geographische Schriften. 24:183 ppGoogle Scholar
  18. Guo X, Yang K, Zhao L, Yang W, Li S, Zhu M, Yao T, Chen Y (2011) Critical evaluation of scalar roughness length parametrizations over a melting valley glacier. Boundary-Layer Meteorol 139:307–332CrossRefGoogle Scholar
  19. Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116(2):201–235. doi: 10.1007/s10546-004-2729-0 CrossRefGoogle Scholar
  20. Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007) SHEBA flux-profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorol 124(3):315–333. doi: 10.1007/s10546-007-9177-6 CrossRefGoogle Scholar
  21. Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2013) The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorol 147(1):51–82. doi: 10.1007/s10546-012-9771-0 CrossRefGoogle Scholar
  22. Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42:55–78CrossRefGoogle Scholar
  23. Holtslag AAM, De Bruin HAR (1988) Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 27(6):689–704CrossRefGoogle Scholar
  24. Huwald H, Higgins CW, Boldi MO, Bou-Zeid E, Lehning M, Parlange MB (2009) Albedo effect on radiative errors in air temperature measurements. Water Resour Res 45:W08431. doi: 10.1029/2008WR007600 CrossRefGoogle Scholar
  25. Joffre SM (1982) Momentum and heat transfers in the surface layer over a frozen sea. Boundary-Layer Meteorol 24:211–229CrossRefGoogle Scholar
  26. Large WG, Pond S (1982) Sensible and latent heat flux measurements over the ocean. J Phys Oceanogr 11:324–336CrossRefGoogle Scholar
  27. Lehning M, Bartelt P, Brown B, Fierz C (2002) A physical SNOWPACK model for the Swiss avalanche warning: Part III: meteorological forcing, thin layer formation and evaluation. Cold Reg Sci Technol 35(3):169–184CrossRefGoogle Scholar
  28. Marks D, Dozier J (1992) Climate and energy exchange at the snow surface in the Alpine region of the Sierra Nevada. 2. Snow cover energy balance. Water Resour Res 28(11):3043–3054CrossRefGoogle Scholar
  29. Martin E, Lejeune Y (1998) Turbulent fluxes above the snow surface. Ann Glaciol 26:179–183CrossRefGoogle Scholar
  30. Massmann WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric Forest Meteorol 113:121–144CrossRefGoogle Scholar
  31. Michlmayr G, Lehning M, Koboltschnig G, Holzmann H, Zappa M, Mott R, Schöner W (2008) Application of the Alpine 3D model for glacier mass balance and glacier runoff studies at Goldbergkees, Austria. Hydrol Process 22(19):3941–3949CrossRefGoogle Scholar
  32. Mott R, Egli L, Grünewald T, Dawes N, Manes C, Bavay M, Lehning M (2011) Micrometeorological processes driving snow ablation in an Alpine catchment. The Cryosphere 5:1083–1098CrossRefGoogle Scholar
  33. Mott R, Gromke C, Grünewald T, Lehning M (2013) Relative importance of advective heat transport and boundary layer decoupling in the melt dynamics of a patchy snow cover. Adv Water Resources 55:88–97CrossRefGoogle Scholar
  34. Mott R, Daniels M, Lehning M (2015) Atmospheric flow development and associated changes in turbulent sensible heat flux over a patchy mountain snow cover. J Hydrometeorol 16:1315–1340CrossRefGoogle Scholar
  35. Munro DS (1980) Exponential-linear stability correction functions for weak to moderate instability near the ground. Boundary-Layer Meteorol 19:125–131CrossRefGoogle Scholar
  36. Nishimura K, Nemoto M (2005) Blowing snow at Mizuho station, Antarctica. Phil Trans R Soc A 363:1647–1662CrossRefGoogle Scholar
  37. Obukhov AM (1946) Turbulence in an atmosphere with a non-uniform temperature. Trudy Inst Teoret Geophys Akad Nauk SSSR. 1:95-115 (translation in: Boundary-Layer Meteorol 1971. 2:7-29)Google Scholar
  38. Plüss C, Mazzoni R (1994) The role of turbulent heat fluxes in the energy balance of high alpine snow cover. Nordic Hydrol 25:25–38Google Scholar
  39. Pohl S, Marsh P, Liston GE (2006) Spatial-temporal variability in turbulent fluxes during spring snowmelt. Arct Antarct Alp Res 38:136–146CrossRefGoogle Scholar
  40. Rannik Ü, Vesala T (1999) Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method. Boundary-Layer Meteorol 91:259–280CrossRefGoogle Scholar
  41. Sharan M, Kumar P (2011) Estimation of upper bounds for the applicability of non-linear similarity functions for non-dimensional wind and temperature profiles in the surface layer in very stable conditions. Proc R Soc A 467(2126):473–494. doi: 10.1098/rspa.2010.0220
  42. Smeets CJPP, van den Broeke MR (2008b) The parameterization of scalar transfer over rough ice. Boundary-Layer Meteorol 128(3):339–355. doi: 10.1007/s10546-008-9292-z CrossRefGoogle Scholar
  43. Sorbjan Z (2010) Gradient-based scales and similarity laws in the stable boundary layer. QJR Meteorol Soc 136(650A):1243–1254. doi: 10.1002/qj.638 Google Scholar
  44. Sorbjan Z (2016) Similarity scaling systems for stably stratified turbulent flows. QJR Meteorol Soc 142(695B):805–810. doi: 10.1002/qj.2682 CrossRefGoogle Scholar
  45. Stearns CR, Weidner GA (1993) Sensible and Latent heat flux estimates in Antarctica. Antarctic Research Series 61:109–138CrossRefGoogle Scholar
  46. Stössel F, Guala M, Fierz C, Manes C, Lehning M (2010) Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover. Water Resources Res 46(4):W04511CrossRefGoogle Scholar
  47. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Acad Publishers, Dordrecht 666 ppCrossRefGoogle Scholar
  48. Vickers D, Mahrt L, Andreas EL (2015) Formulation of the sea surface friction velocity in terms of the mean wind and bulk stability. J Appl Meteor Climatol 54(3):691–703CrossRefGoogle Scholar
  49. Webb EK (1970) Profile relationships the log-linear range and extension to strong stability. QJR Meteorol Soc 96:67–90CrossRefGoogle Scholar
  50. Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Sebastian Schlögl
    • 1
    • 2
  • Michael Lehning
    • 1
    • 2
  • Kouichi Nishimura
    • 3
  • Hendrik Huwald
    • 2
  • Nicolas J. Cullen
    • 4
  • Rebecca Mott
    • 1
  1. 1.WSL-Institute for Snow and Avalanche Research SLFDavosSwitzerland
  2. 2.School of Architecture, Civil and Environmental EngineeringÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Graduate School of Environmental StudiesUniversity of NagoyaNagoyaJapan
  4. 4.Department of GeographyUniversity of OtagoDunedinNew Zealand

Personalised recommendations