Boundary-Layer Meteorology

, Volume 164, Issue 3, pp 383–399 | Cite as

Analytical Reduced Models for the Non-stationary Diabatic Atmospheric Boundary Layer

Research Article

Abstract

Geophysical boundary-layer flows feature complex dynamics that often evolve with time; however, most current knowledge centres on the steady-state problem. In these atmospheric and oceanic boundary layers, the pressure gradient, buoyancy, Coriolis, and frictional forces interact to determine the statistical moments of the flow. The resulting equations for the non-stationary mean variables, even when succinctly closed, remain challenging to handle mathematically. Here, we derive a simpler physical model that reduces these governing unsteady Reynolds-averaged Navier–Stokes partial differential equations into a single first-order ordinary differential equation with non-constant coefficients. The reduced model is straightforward to solve under arbitrary forcing, even when the statistical moments are non-stationary and the viscosity varies in time and space. The model is successfully validated against large-eddy simulation for, (1) time-variable pressure gradients, and (2) linearly time-variable buoyancy. The new model is shown to have a superior performance compared to the classic Blackadar solutions (and later improvements on these solutions), and it covers a much wider range of conditions.

Keywords

Large-eddy simulation Low-level jet Non-stationary turbulence Unsteady atmospheric boundary layer Variable static stability 

Notes

Acknowledgements

The authors acknowledge support from the Physical and Dynamic Meteorology Program of the National Science Foundation under AGS-1026636, and from the Cooperative Institute for Climate Science of Princeton University and the National Oceanographic and Atmospheric Administration under Grant Number 344-6127. The simulations were performed on the computing clusters of the National Centre for Atmospheric Research under Project Number P36861020.

References

  1. Albertson JD, Parlange MB (1999) Natural integration of scalar fluxes from complex terrain. Adv Water Resour 23:239–252. doi:10.1016/S0309-1708(99)00011-1 CrossRefGoogle Scholar
  2. Baas P, Van de Wiel BJH, Van den Brink L, Holtslag AAM (2012) Composite hodographs and inertial oscillations in the nocturnal boundary layer. Q J R Meteorol Soc 138:528–535. doi:10.1002/qj.941 CrossRefGoogle Scholar
  3. Banta RM, Newsom RK, Lundquist JK, Pichugina YL (2002) Nocturnal low-level jet characteristics over Kansas during CASES-99. Boundary-Layer Meteorol 105:221–252CrossRefGoogle Scholar
  4. Blackadar A (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Am Meteorol Soc 38:283–290Google Scholar
  5. Bonner W, Paegle J (1970) Diurnal variations in boundary layer winds over the South-Central United States in summer. Mon Weather Rev 98:735–744CrossRefGoogle Scholar
  6. Bou-Zeid E, Meneveau C, Parlange M (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17:25105. doi:10.1063/1.1839152 CrossRefGoogle Scholar
  7. Buajitti K, Blackadar AK (1957) Theoretical studies of diurnal wind-structure variations in the planetary boundary layer. Q J R Meteorol Soc 83:486–500. doi:10.1002/qj.49708335804 CrossRefGoogle Scholar
  8. Du Y, Rotunno R (2014) A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J Atmos Sci 71:3674–3683. doi:10.1175/JAS-D-14-0060.1 CrossRefGoogle Scholar
  9. Ekman VW (1905) On the influence of the Earth’s rotation on ocean-currents. Ark Mat Astron Fys 2:1–52Google Scholar
  10. Garratt J (1994) Review: the atmospheric boundary layer. Earth Sci Rev 37:89–134. doi:10.1016/0012-8252(94)90026-4 CrossRefGoogle Scholar
  11. Gayen B, Sarkar S, Taylor JR (2010) Large eddy simulation of a stratified boundary layer under an oscillatory current. J Fluid Mech 643:233. doi:10.1017/S002211200999200X CrossRefGoogle Scholar
  12. Grisogono B (1995) A generalized Ekman layer profile with gradually varying eddy diffusivities. Q J R Meteorol Soc 121:445–453CrossRefGoogle Scholar
  13. Hering W, Borden T (1962) Diurnal variations in the summer wind field over the Central United States. J Atmos Sci 19:81–86CrossRefGoogle Scholar
  14. Hsu BC, Lu X, Kwan M (2000) LES and RANS studies of oscillating flows over flat plate. J Eng Mech 126:186–193CrossRefGoogle Scholar
  15. Huang J, Bou-Zeid E (2013) Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I: a large-eddy simulation study. J Atmos Sci 70:1513–1527. doi:10.1175/JAS-D-12-0167.1 CrossRefGoogle Scholar
  16. Israeli M, Orszag SA (1981) Approximation of radiation boundary conditions. J Comput Phys 41:115–135. doi:10.1016/0021-9991(81)90082-6 CrossRefGoogle Scholar
  17. Kumar V, Svensson G, HoltslagAAM Meneveau C, Parlange MB (2010) Impact of surface flux formulations and geostrophic forcing on large-eddy simulations of diurnal atmospheric boundary layer flow. J Appl Meteorol Climatol 49:1496–1516. doi:10.1175/2010JAMC2145.1 CrossRefGoogle Scholar
  18. Lewis DM, Belcher SE (2004) Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn Atmos Ocean 37:313–351. doi:10.1016/j.dynatmoce.2003.11.001 CrossRefGoogle Scholar
  19. Lohmann IP, Fredsøe J, Sumer BM, Christensen ED (2006) Large eddy simulation of the ventilated wave boundary layer. J Geophys Res 111:C06036. doi:10.1029/2005JC002946 Google Scholar
  20. Madsen OS (1977) A realistic model the wind-iduced Ekman boundary layer. J Phys Oceanogr 7:248–255CrossRefGoogle Scholar
  21. Mahrt L (2013) Stably stratified atmospheric boundary layers. Annu Rev Fluid Mech 46:23–45. doi:10.1146/annurev-fluid-010313-141354 CrossRefGoogle Scholar
  22. Mahrt LJ, Schwerdtfeger W (1970) Ekman spirals for exponential thermal wind. Boundary-Layer Meteorol 1:137–145. doi:10.1007/BF00185735 CrossRefGoogle Scholar
  23. McNider RT (1982) A note on velocity fluctuations in drainage flows. J. Atmos. Sci. 39:1658–1660CrossRefGoogle Scholar
  24. Miles J (1994) Analytical solutions for the Ekman layer. Boundary-Layer Meteorol 67:1–10. doi:10.1007/BF00705505 CrossRefGoogle Scholar
  25. Momen M (2016) Mean and turbulence dynamics of atmospheric boundary layers: large-eddy simulations and reduced analytical models. Ph.D. thesis, Princeton UniversityGoogle Scholar
  26. Momen M, Bou-zeid E (2017) Mean and turbulence dynamics in unsteady Ekman boundary layers. J Fluid Mech 816:209–242. doi:10.1017/jfm.2017.76
  27. Momen M, Bou-Zeid E (2016) Large eddy simulations and damped-oscillator models of the unsteady Ekman boundary layer. J Atmos Sci 73:25–40. doi:10.1175/JAS-D-15-0038.1 CrossRefGoogle Scholar
  28. Nunalee CG, Basu S (2013) Mesoscale modeling of coastal low-level jets: impliactions for offshore wind resource estimation. Wind Energy 17:657–669Google Scholar
  29. Orszag SA, Pao YH (1974) Numerical computation of turbulent shear flows. Adv Geophys 18:225–236CrossRefGoogle Scholar
  30. Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83:555–581. doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2 CrossRefGoogle Scholar
  31. Radhakrishnan S, Piomelli U (2008) Large-eddy simulation of oscillating boundary layers: Model comparison and validation. J Geophys Res Ocean 113:1–14. doi:10.1029/2007JC004518 CrossRefGoogle Scholar
  32. Schröter JS, Moene AF, Holtslag AAM (2013) Convective boundary layer wind dynamics and inertial oscillations: the influence of surface stress. Q J R Meteorol Soc 139:1694–1711. doi:10.1002/qj.2069 CrossRefGoogle Scholar
  33. Shapiro A, Fedorovich E (2010) Analytical description of a nocturnal low-level jet. Q J R Meteorol Soc 136:1255–1262. doi:10.1002/qj.628 Google Scholar
  34. Shibuya R, Sato K, Nakanishi M (2014) Diurnal wind cycles forcing inertial oscillations: a latitude-dependent resonance phenomenon. J Atmos Sci 71:767–781. doi:10.1175/JAS-D-13-0124.1 CrossRefGoogle Scholar
  35. Tan ZM (2001) An approximate analytical solution for the baroclinic and variable eddy diffusivity semi-geostrophic Ekman boundary layer. Boundary-Layer Meteorol 98:361–385. doi:10.1023/A:1018708726112 CrossRefGoogle Scholar
  36. Tennekes H, Lumley J (1972) A first course in turbulence. MIT, Boston, 300 ppGoogle Scholar
  37. Thorpe AJ, Guymer TH (1977) The nocturnal jet. Q J R Meteorol Soc 103:633–653. doi:10.1002/qj.49710343809 CrossRefGoogle Scholar
  38. Van de Wiel BJH, Moene AF, Steeneveld GJ, Baas P, Bosveld FC, Holtslag AAM (2010) A Conceptual view on inertial oscillations and nocturnal low-level jets. J Atmos Sci 67:2679–2689. doi:10.1175/2010JAS3289.1
  39. Vincent CL (2010) Mesoscale wind fluctuations over Danish waters. Ph.D. thesis, Denmark Technical UniversityGoogle Scholar
  40. Yordanov D, Syrakov D, Djolov G (1983) A barotropic planetary boundary layer. Boundary-Layer Meteorol 25:363–373. doi:10.1007/BF02041155 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Earth System ScienceStanford UniversityStanfordUSA
  2. 2.Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonUS

Personalised recommendations