Boundary-Layer Meteorology

, Volume 164, Issue 1, pp 135–159 | Cite as

Observations of Atmospheric Methane and Carbon Dioxide Mixing Ratios: Tall-Tower or Mountain-Top Stations?

  • Ines BambergerEmail author
  • Brian Oney
  • Dominik Brunner
  • Stephan Henne
  • Markus Leuenberger
  • Nina Buchmann
  • Werner Eugster
Research Article


Mountain-top observations of greenhouse gas mixing ratios may be an alternative to tall-tower measurements for regional scale source and sink estimation. To investigate the equivalence or limitations of a mountain-top site as compared to a tall-tower site, we used the unique opportunity of comparing in situ measurements of methane (\(\hbox {CH}_{4}\)) and carbon dioxide (\(\hbox {CO}_{2}\)) mixing ratios at a mountain top (986 m above sea level, a.s.l.) with measurements from a nearby (distance 28.4 km) tall tower, sampled at almost the same elevation (1009 m a.s.l.). Special attention was given to, (i) how local wind statistics and greenhouse gas sources and sinks at the mountain top influence the observations, and (ii) whether mountain-top observations can be used as for those from a tall tower for constraining regional greenhouse gas emissions. Wind statistics at the mountain-top site are clearly more influenced by local flow systems than those at the tall-tower site. Differences in temporal patterns of the greenhouse gas mixing ratios observed at the two sites are mostly related to the influence of local sources and sinks at the mountain-top site. Major influences of local sources can be removed by applying a statistical filter (\(5{\mathrm{th}}\) percentile) or a filter that removes periods with unfavourable flow conditions. In the best case, the bias in mixing ratios between the mountain-top and the tall-tower sites after the application of the wind filter was \({-}0.0005\pm 0.0010\) ppm for methane (September, 0000–0400 UTC) and \(0.11\pm 0.18\) ppm for \(\hbox {CO}_{2}\) (February, 1200–1600 UTC). Temporal fluctuations of atmospheric \(\hbox {CH}_{4}\) and \(\hbox {CO}_{2}\) mixing ratios at both stations also showed good agreement (apart from \(\hbox {CO}_{2}\) during summertime) as determined by moving bi-weekly Pearson correlation coefficients (up to 0.96 for \(\hbox {CO}_{2}\) and 0.97 for \(\hbox {CH}_{4}\)). When only comparing mixing ratios minimally influenced by local sources (low bias and high correlation coefficients), our measurements indicate that mountain-top observations are comparable to tall-tower observations.


Atmospheric observations Greenhouse gases Local greenhouse gas sources Mountain meteorology Mountain top Tall tower 



The study was financially supported by the Swiss National Science Foundation under the Grant Number CRSII2_136273. The authors acknowledge the staff members of the ETH research station for the agricultural management at the mountain-top site and the technicians of the ETH Grassland Sciences Group, Peter Plüss and Thomas Baur, for their assistance during installation and setup of the measurement station at Früebüel. We acknowledge the tower-site installation at Beromünster designed by Rüdiger Schanda, Peter Nyfeler, Hanspeter Moret, Samuel Marending from the University of Bern and installed by Cablex AG (Bern, Switzerland). Further, the authors acknowledge Swisscom for granting access to the tall tower, and the local authorities for the construction permit. Susanne Burri, Carmen Emmel, Anna Gilgen, Lukas Hörtnagl and Lutz Merbold from the Grassland Sciences Group are acknowledged for their helpful scientific discussions.

Supplementary material

10546_2017_236_MOESM1_ESM.pdf (2.9 mb)
Supplementary material 1 (pdf 2947 KB)


  1. Andrews AE, Kofler JD, Trudeau ME, Williams JC, Neff DH, Masarie KA, Chao DY, Kitzis DR, Novelli PC, Zhao CL, Dlugokencky EJ, Lang PM, Crotwell MJ, Fischer ML, Parker MJ, Lee JT, Baumann DD, Desai AR, Stanier CO, De Wekker SFJ, Wolfe DE, Munger JW, Tans PP (2014) \(\text{ CO }_{2}\), CO, and \(\text{ CH }_{4}\) measurements from tall towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmos Meas Tech 7:647–687. doi: 10.5194/amt-7-647-2014 CrossRefGoogle Scholar
  2. Bakwin PS, Davis KJ, YI C, Wofsy SC, Munger JW, L Haszpra L, Barcza Z (2004) Regional carbon dioxide fluxes from mixing ratio data. Tellus 56B:301–311CrossRefGoogle Scholar
  3. Bakwin PS, Tans PP, Hurst DF, Zhao C (1998) Measurements of carbon dioxide on very tall towers: results of the NOAA/CMDL program. Tellus 50B:401–415Google Scholar
  4. Bakwin PS, Tans PP, Zhao C, Ussler W, Quesnell E (1995) Measurements of carbon dioxide on a very tall tower. Tellus 47B:535–549Google Scholar
  5. Bamberger I, Stieger J, Buchmann N, Eugster W (2014) Spatial variability of methane: attributing atmospheric concentrations to emissions. Environ Pollut 190:65–74. doi: 10.1016/j.envpol.2014.03.028 CrossRefGoogle Scholar
  6. Beck V, Chen H, Gerbig C, Bergamaschi P, Bruhwiler L, Houweling S, Röckmann T, Kolle O, Steinbach J, Koch T, Sapart CJ, van der Veen C, Frankenberg C, Andreae MO, Artaxo P, Longo KM, Wofsy SC (2012) Methane airborne measurements and comparison to global models during BARCA. J Geophys Res 117:D15310. doi: 10.1029/2011JD017345 CrossRefGoogle Scholar
  7. Berhanu TA, Satar E, Schanda R, Nyfeler P, Moret H, Brunner D, Oney B, Leuenberger M (2016) Measurements of greenhouse gases at Beromünster tall tower station in Switzerland. Atmos Meas Tech 9:2603–2614. doi: 10.5194/amt-9-2603-2016 CrossRefGoogle Scholar
  8. Botev ZI, Grotowski JF, Kroese DP (2010) Kernel density estimation via diffusion. Ann Stat 38:2916–2957. doi: 10.1214/10-AOS799 CrossRefGoogle Scholar
  9. Brooks BGJ, Desai AR, Stephens BB, Bowling DR, Burns SP, Watt AS, Heck SL, Sweeney C (2012) Assessing filtering of mountaintop \(\text{ CO }_{2}\) mole fractions for application to inverse models ob biosphere-atmosphere carbon exchange. Atmos Chem Phys 12:2099–2115. doi: 10.5194/acp-12-2099-2012 CrossRefGoogle Scholar
  10. Buchwitz M, Reuter M, Schneising O, Boesch H, Guerlet S, Dils B, Aben I, Armante R, Bergamaschi P, Blumenstock T, Bovensmann H, Brunner D, Buchmann B, Burrows JP, Butz A, Chédin A, Chevallier F, Crevoisier CD, Deutscher NM, Frankenberg C, Hase F, Hasekamp OP, Heymann J, Kaminski T, Laeng A, Lichtenberg G, De Mazière M, Noël S, Notholt J, Orphal J, Popp C, Parker R, Scholze M, Sussmann R, Stiller GP, Warneke T, Zehner C, Bril A, Crisp D, Griffith DWT, Kuze A, O’Dell C, Oshchepkov S, Sherlock V, Suto H, Wennberg P, Wunch D, Yokota T, Yoshida Y (2013) The greenhouse gas climate change initiative (GHG-CCI): comparison and quality assessment of near-surface-sensitive satellite-derived \(\text{ CO }_{2}\) and \(\text{ CH }_{4}\) global data sets. Remote Sens Environ 162:344–362. doi: 10.1016/j.rse.2013.04.024 CrossRefGoogle Scholar
  11. Cleugh HA, Raupach MR, Briggs PR, Coppin PA (2004) Regional-scale heat and water vapour fluxes in an agricultural landscape: an evaluation of CBL budget methods at OASIS. Bound-Layer Meteorol 110:99–137CrossRefGoogle Scholar
  12. Collaud Coen M, Praz C, Haefele A, Ruffieux D, Kaufmann P, Calpini B (2014) Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model. Atmos Chem Phys 14:13205–13221. doi: 10.5194/acp-14-13205-2014 CrossRefGoogle Scholar
  13. Crevoisier C, Gloor M, Gloaguen E, Horowitz LW, Sarmiento JL, Sweeney C, Tans PP (2006) A direct carbon budgeting approach to infer carbon sources and sinks. Design and synthetic application to complement the NACP observation network. Tellus B 58:366–375. doi: 10.1111/j.1600-0889.2006.00214.x CrossRefGoogle Scholar
  14. Davis KJ, Bakwin PS, Yi C, Berger BW, Zhao C, Teclaw RM, Isebrands JG (2003) The annual cycles of \(\text{ CO }_{2}\) and H\(_{2}\)O exchange over a northern mixed forest as observed from a very tall tower. Global Change Biol 9:1278–1293CrossRefGoogle Scholar
  15. Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D (2011) Global atmospheric methane: budget, changes and dangers. Phil Trans R Soc A 369:2058–2072. doi: 10.1098/rsta.2010.0341 CrossRefGoogle Scholar
  16. Eugster W, Siegrist FC (2000) The influence of nocturnal \(\text{ CO }_{2}\) advection on \(\text{ CO }_{2}\) flux measurements. Basic Appl Ecol 1:177–188. doi: 10.1078/1439-1791-00028 CrossRefGoogle Scholar
  17. Frankenberg C, Bergamaschi P, Butz A, Houweling S, Meirink JF, Notholt J, Petersen AK, Schrijver H, Warneke T, Aben I (2008) Tropical methane emissions: a revised view from SCIAMACHY onboard ENVISAT. Geophys Res Lett 35:L15811. doi: 10.1029/2008GL034300 CrossRefGoogle Scholar
  18. Frankenberg C, Meirink JF, van Weele M, Platt U, Wagner T (2005) Assessing methane emissions from global space-borne observations. Science 308:1010–1014. doi: 10.1126/science.1106644 CrossRefGoogle Scholar
  19. Frankenberg C, Pollock R, Lee RAM, Rosenberg R, Blavier J-F, Crisp D, O’Dell CW, Osterman GB, Roehl C, Wennberg PO, Wunch D (2015) The orbiting carbon observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements. Atmos Meas Tech 8:301–313. doi: 10.5194/amt-8-301-2015 CrossRefGoogle Scholar
  20. Gerbig C, Körner S, Lin JC (2008) Vertical mixing in atmospheric tracer transport models: error characterization and propagation. Atmos Chem Phys 8:591–602. doi: 10.5194/acp-8-591-2008 CrossRefGoogle Scholar
  21. Gloor M, Bakwin P, Hurst D, Lock L, Draxler R, Tans P (2001) What is the concentration footprint of a tall tower? J Geophys Res 106:17831–17840. doi: 10.1029/2001JD900021 CrossRefGoogle Scholar
  22. Gohm A, Harnisch F, Vergeiner J, Obleitner F, Schnitzhofer R, Hansel A, Fix A, Neininger B, Emeis S, Schäfer K (2009) Air pollution transport in an alpine valley: results from airborne and ground-based observations. Bound-Layer Meteorol 131:441–463. doi: 10.1007/s10546-009-9371-9 CrossRefGoogle Scholar
  23. Göckede M, Turner DP, Michalak AM, Vickers D, Law BE (2010) Sensitivity of a subregional scale atmospheric inverse \(\text{ CO }_{2}\) modeling framework to boundary conditions. J Geophys Res 115:D24112. doi: 10.1029/2010D014443 CrossRefGoogle Scholar
  24. Holton JR (2004) An Introduction to Dynamic Meteorology, 4th edn. Elsevier, London, p 535Google Scholar
  25. Imer D, Merbold L, Eugster W, Buchmann N (2013) Temporal and spatial variations of soil \(\text{ CO }_{2}\), \(\text{ CH }_{4}\) and \(\text{ N }_{2}\text{ O }\) fluxes at three differently managed grasslands. Biogeosciences 10:5931–5945. doi: 10.5194/bg-10-5931-2013 CrossRefGoogle Scholar
  26. Karion A, Sweeney C, Wolter S, Newberger T, Chen H, Andrews A, Kofler J, Neff D, Tans P (2013) Long-term greenhouse gas measurements from aircraft. Atmos Meas Tech 6:511–526. doi: 10.5194/amt-6-511-2013 CrossRefGoogle Scholar
  27. Kretschmer R, Gerbig C, Karstens U, Biavati G, Vermeulen A, Vogel F, Hammer S, Totsche KU (2014) Impact of optimized mixing heights on simulated regional atmospheric transport of \(\text{ CO }_{2}\). Atmos Chem Phys 14:7149–7172. doi: 10.5194/acp-14-7149-2014 CrossRefGoogle Scholar
  28. Kuze A, Suto H, Nakajima M, Hamazaki T (2009) Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl Opt 48:6716–6733CrossRefGoogle Scholar
  29. Lauvaux T, Schuh AE, Bocquet M, Wu L, Richardson S, Miles N, Davis KJ (2012) Network design for mesoscale inversions of \(\text{ CO }_{2}\) sources and sinks. Tellus B 64:17980CrossRefGoogle Scholar
  30. Lee TR, de Wekker SFJ, Sandip P, Andrews AE, Kofler J (2015) Meteorological controls on the diurnal variability of carbon monoxide mixing ratio at a mountaintop monitoring site in the Appalachian Mountains. Tellus B 67:25659CrossRefGoogle Scholar
  31. Lin JC, Gerbig C (2005) Accounting for the effect of transport errors on tracer inversions. Geophys Res Lett 32:L01802. doi: 10.1029/2004GL021127 Google Scholar
  32. Lugauer M, Winkler P (2005) Thermal circulation in South Bavaria—climatology and synoptic aspects. Meteorol Z 14:15–30. doi: 10.1127/0941-2948/2005/0014-0015 CrossRefGoogle Scholar
  33. Marquis M, Tans P (2008) Carbon crucible. Science 320:460–461. doi: 10.1126/science.1156451 CrossRefGoogle Scholar
  34. McKain K, Wofsy SC, Nehrkorn T, Eluszkiewicz J, Ehleringer JR, Stephens BB (2012) Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1116645109 Google Scholar
  35. Merbold L, Eugster W, Stieger J, Zahniser M, Nelson D, Buchmann N (2014) Greenhouse gas budget (\(\text{ CO }_{2}\), \(\text{ CH }_{4}\) and \(\text{ N }_{2}\text{ O }\)) of intensively managed grassland following restoration. Glob Change Biol 20:1913–1928. doi: 10.1111/gcb.12518 CrossRefGoogle Scholar
  36. Miles NL, Richardson SJ, Davis KJ, Lauvaux T, Andrews AE, West TO, BandaruV, Crosson ER (2012) Large amplitude spatial and temporal gradients in atmospheric boundary layer \(\text{ CO }_{2}\) mole fractions detected with a tower-based network in the U.S. upper Midwest. J Geophys Res 117: G01019, doi: 10.1029/2011JG001781
  37. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, et al. (2013) Anthropogenic and natural radiative forcing, in climate change 2013: the physical science basis. In: Stocker TF, Qin D, et al. (eds), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, UK and New York, pp. 659–740Google Scholar
  38. Nisbet E, Weiss R (2010) Atmospheric science. Top-down versus bottom-up. Science 328:1241–1243. doi: 10.1126/science.1189936 CrossRefGoogle Scholar
  39. Oney B, Henne S, Gruber N, Leuenberger M, Bamberger I, Eugster W, Brunner D (2015) The CarboCount CH sites: characterization of a dense greenhouse gas observation network. Atmos Chem Phys 15:11147–11164. doi: 10.5194/acp-15-11147-2015 CrossRefGoogle Scholar
  40. Peters W, Krol MC, van der Werf GR, Houweling S, Jones CD, Hughes J, Schaefer K, Masarie KA, Jacobson AR, Miller JB, Cho CH, Ramonet M, Schmidt M, Ciattaglia L, Apadula F, Heltai D, Meinhardt F, di Sarra AG, Piacentino S, Sferlazzo D, Aalto T, Hatakka J, Strom J, Haszpra L, Meijer HAJ, van der Laan S, Neubert REM, Jordan A, Rodo X, Morgui J-A, Vermeulen AT, Popa E, Rozanski K, Zimnoch M, Manning AC, Leuenberger M, Uglietti C, Dolman AJ, Ciais P, Heimann M, Tans PP (2010) Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Global Change Biol 16:1317–1337. doi: 10.1111/j.1365-2486.2009.02078.x CrossRefGoogle Scholar
  41. Pillai D, Gerbig C, Ahmadov R, Rödenbeck C, Kretschmer R, Koch T, Thompson R, Neininger B, Lavrié JV (2011) High-resolution simulations of atmospheric \(\text{ CO }_{2}\) over complex terrain - representing the Ochsenkopf mountain tall tower. Atmos Chem Phys 11:7445–7464. doi: 10.5194/acp-11-7445-2011 CrossRefGoogle Scholar
  42. Rotach MW, Andretta M, Calanca P, Weigel AP, Weiss A (2007) Boundary layer characteristics and turbulent exchange mechanisms in highly complex terrain. Acta Geophys 56:194–219. doi: 10.2478/s11600-007-0043-1 Google Scholar
  43. Rotach MW, Wohlfahrt G, Hansel A, Reif M, Wagner J, Gohm A (2013) The world is not flat - implications for the global carbon balance. Bull Am Meteorol Soc 95:1021–1028CrossRefGoogle Scholar
  44. Schnitzhofer R, Norman M, Wisthaler A, Vergeiner J, Harnisch F, Gohm A, Obleitner F, Fix A, Neininger B, Hansel A (2009) A multimethodological approach to study the spatial distribution of air pollution in an Alpine valley during wintertime. Atmos Chem Phys 9:3385–3396. doi: 10.5194/acp-9-3385-2009 CrossRefGoogle Scholar
  45. Schuck TJ, Ishijima K, Patra PK, Baker AK, Machida T, Matsueda H, Sawa Y, Umezawa T, Brenninkmeijer CAM, Lelieveld J (2012) Distribution of methane in the tropical upper troposphere measured by CARIBIC and CONTRAIL aircraft. J Geophys Res - Atmos 117:D19304. doi: 10.1029/2012JD018199 CrossRefGoogle Scholar
  46. Seibert P (1990) South foehn studies since the ALPEX experiment. Meteorol Atmos Phys 43:91–103. doi: 10.1007/BF01028112 CrossRefGoogle Scholar
  47. Smallman TL, Williams M, Moncrieff JB (2014) Can seasonal and interannual variation in landscape \(\text{ CO }_{2}\) fluxes be detected by atmospheric observations of \(\text{ CO }_{2}\) concentrations made at a tall tower? Biogeosciences 11:735–747. doi: 10.5194/bg-11-735-2014 CrossRefGoogle Scholar
  48. Stieger J, Bamberger I, Buchmann N, Eugster W (2015) Validation of farm-scale methane emissions using nocturnal boundary-layer budgets. Atmos Chem Phys 15:14055–14069. doi: 10.5194/acp-15-14055-2015 CrossRefGoogle Scholar
  49. Sun J, Oncley SP, Burns SP, Stephens BB, Lenschow DH, Campos T, Russel KM, Schimel DS, Sacks WJ, De Wekker SFJ, Lai CT, Lamb B, Ojima D, Ellsworth PZ, Sternberg LSL, Zhong S, Clements C, Moore DJP, Anderson DE, Watt AS, Hu J, Tschudi M, Aulenbach S, Allwine E, Coons T (2010) A multiscale and multidisciplinary investigation of ecosystem-atmosphere \(\text{ CO }_{2}\) exchange over the Rocky Mountains of Colorado. Bull Amer Meteorol Soc 91:209–230CrossRefGoogle Scholar
  50. Thompson RL, Manning AC, Gloor E, Schultz U, Seifert T, Hänsel F, Jordan A, Heimann M (2009) In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany. Atmos Meas Tech 2:573–591. doi: 10.5194/amt-2-573-2009 CrossRefGoogle Scholar
  51. Tolk LF, Meesters AGCA, Dolman AJ, Peters W (2008) Modelling representation errors of atmospheric \(\text{ CO }_{2}\) mixing ratios at a regional scale. Atmos Chem Phys 8:6587–6596. doi: 10.5194/acp-8-6587-2008 CrossRefGoogle Scholar
  52. van der Molen MK, Dolman AJ (2007) Regional carbon fluxes and the effect of topography on the variability of atmospheric \(\text{ CO }_{2}\). J Geophys Res 112:D01104. doi: 10.1029/2006JD007649 Google Scholar
  53. Vermeulen AT, Hensen A, Popa ME, van den Bulk WCM, Jongejan PAC (2011) Greenhouse gas observations from Cabauw Tall Tower (1992–2010). Atmos Meas Tech 4:617–644. doi: 10.5194/amt-4-617-2011 CrossRefGoogle Scholar
  54. Villani MG, Bergamaschi P, Krol M, Meirink JF, Dentener F (2010) Inverse modeling of European \(\text{ CH }_{4}\) emissions: sensitivity to the observational network. Atmos Chem Phys 10:1249–1267. doi: 10.5194/acp-10-1249-2010 CrossRefGoogle Scholar
  55. Wanner H, Furger M (1990) The bise—climatology of a regional wind north of the Alps. Meteorol Atmos Phys 43:105–115CrossRefGoogle Scholar
  56. Whiteman D (2000) Diurnal mountain winds. Mountain Meteorology. Oxford University Press, New YorkGoogle Scholar
  57. Winderlich J, Chen H, Gerbig C, Seifert T, Kolle O, Lavrič JV, Kaiser C, Höfer A, Heimann M (2010) Continuous low-maintenance \(\text{ CO }_{2}\)/\(\text{ CH }_{4}\)/H\(_{2}\)O measurements at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia. Atmos Meas Tech 3:1113–1128. doi: 10.5194/amt-3-1113-2010 CrossRefGoogle Scholar
  58. Winderlich J, Gerbig C, Kolle O, Heimann M (2014) Inferences from \(\text{ CO }_{2}\) and \(\text{ CH }_{4}\) concentration profiles at the Zotino Tall Tower Observatory (ZOTTO) on regional summertime ecosystem fluxes. Biogeosciences 11:2055–2068. doi: 10.5194/bg-11-2055-2014 CrossRefGoogle Scholar
  59. Xiong X, Barnet CD, Zhuang Q, Machida T, Sweeney C, Patra PK (2010) Mid-upper tropospheric methane in the high Northern Hemisphere: Spaceborne observations by AIRS, aircraft measurements, and model simulations. J Geophys Res 115:D19309. doi: 10.1029/2009JD013796 CrossRefGoogle Scholar
  60. Zeeman MJ, Hiller R, Gilgen AK, Michna P, Plüss P, Buchmann N, Eugster W (2010) Management and climate impacts on net \(\text{ CO }_{2}\) fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland. Agric For Meteorol 150:519–530. doi: 10.1016/j.agrformet.2010.01.011
  61. Zhang HF, Chen BZ, Machida T, Matsueda H, Sawa Y, Fukuyama Y, Langenfelds R, van der Schoot M, Xu G, Yan JW, Cheng ML, Zhou LX, Tans PP, Peters W (2014) Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface \(\text{ CO }_{2}\) observations for the period 2006–2010. Atmos Chem Phys 14:5807–5824. doi: 10.5194/acp-14-5807-2014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Ines Bamberger
    • 1
    • 2
    Email author
  • Brian Oney
    • 3
  • Dominik Brunner
    • 3
  • Stephan Henne
    • 3
  • Markus Leuenberger
    • 4
  • Nina Buchmann
    • 1
  • Werner Eugster
    • 1
  1. 1.Department of Environmental Systems Science, Institute of Agricultural SciencesETH ZurichZurichSwitzerland
  2. 2.Institute of Meteorology and Climate Research Atmospheric Environmental Research (IMK-IFU)Karlsruhe Institute of Technology (KIT)Garmisch-PartenkirchenGermany
  3. 3.Empa, Swiss Federal Laboratories for Materials Science and TechnologyDuebendorfSwitzerland
  4. 4.Physics Institute, Climate and Environmental PhysicsUniversity of BernBernSwitzerland

Personalised recommendations