Boundary-Layer Meteorology

, Volume 163, Issue 2, pp 203–224 | Cite as

Aerodynamic Properties of Rough Surfaces with High Aspect-Ratio Roughness Elements: Effect of Aspect Ratio and Arrangements

  • Jasim Sadique
  • Xiang I. A. Yang
  • Charles Meneveau
  • Rajat Mittal
Research Article


We examine the effect of varying roughness-element aspect ratio on the mean velocity distributions of turbulent flow over arrays of rectangular-prism-shaped elements. Large-eddy simulations (LES) in conjunction with a sharp-interface immersed boundary method are used to simulate spatially-growing turbulent boundary layers over these rough surfaces. Arrays of aligned and staggered rectangular roughness elements with aspect ratio >1 are considered. First the temporally- and spatially-averaged velocity profiles are used to illustrate the aspect-ratio effects. For aligned prisms, the roughness length (\(z_\mathrm{o}\)) and the friction velocity (\(u_*\)) increase initially with an increase in the roughness-element aspect ratio, until the values reach a plateau at a particular aspect ratio. The exact value of this aspect ratio depends on the coverage density. Further increase in the aspect ratio changes neither \(z_\mathrm{o}\), \(u_*\) nor the bulk flow above the roughness elements. For the staggered cases, \(z_\mathrm{o}\) and \(u_*\) continue to increase for the surface coverage density and the aspect ratios investigated. To model the flow response to variations in roughness aspect ratio, we turn to a previously developed phenomenological volumetric sheltering model (Yang et al., in J Fluid Mech 789:127–165, 2016), which was intended for low to moderate aspect-ratio roughness elements. Here, we extend this model to account for high aspect-ratio roughness elements. We find that for aligned cases, the model predicts strong mutual sheltering among the roughness elements, while the effect is much weaker for staggered cases. The model-predicted \(z_\mathrm{o}\) and \(u_*\) agree well with the LES results. Results show that the model, which takes explicit account of the mutual sheltering effects, provides a rapid and reliable prediction method of roughness effects in turbulent boundary-layer flows over arrays of rectangular-prism roughness elements.


Analytical model High aspect-ratio roughness elements Rough-wall boundary layers Wall modelled large-eddy simulations 



The authors gratefully acknowledge the Office of Naval Research for financial and computational resources, the Maryland Advanced Research Computing Center (MARCC) and the National Science Foundation’s Extreme Science and Engineering Discovery Environment, (XSEDE) (Towns et al. 2014), which is supported by National Science Foundation grant number ACI-1053575, for computational resources.


  1. Anderson W, Meneveau C (2011) Dynamic roughness model for large-eddy simulation of turbulent flow over multiscale, fractal-like rough surfaces. J Fluid Mech 679:288–314CrossRefGoogle Scholar
  2. Anderson W, Passalacqua P, Porté-Agel F, Meneveau C (2012) Large-eddy simulation of atmospheric boundary-layer flow over fluvial-like landscapes using a dynamic roughness model. Boundary-Layer Meteorol 144(2):263–286CrossRefGoogle Scholar
  3. Anderson W, Li Q, Bou-Zeid E (2015) Numerical simulation of flow over urban-like topographies and evaluation of turbulence temporal attributes. J Turbul 16(9):809–831CrossRefGoogle Scholar
  4. Barlow JF, Coceal O (2009) A review of urban roughness sublayer turbulence. Met Office Research and Development. Tech, Rep 527Google Scholar
  5. Bons JP (2010) A review of surface roughness effects in gas turbines. J Turbomach 132(2):041,203–041,203-10Google Scholar
  6. Bou-Zeid E, Meneveau C, Parlange M (2005) A scale-dependent lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17(2):025,105Google Scholar
  7. Cheng H, Castro IP (2002) Near-wall flow development after a step change in surface roughness. Boundary-Layer Meteorol 105(3):411–432CrossRefGoogle Scholar
  8. Cheng WC, Porté-Agel F (2015) Adjustment of turbulent boundary-layer flow to idealized urban surfaces: a large-eddy simulation study. Boundary-Layer Meteorol 155(2):249–270CrossRefGoogle Scholar
  9. Cheng H, Hayden P, Robins A, Castro I (2007) Flow over cube arrays of different packing densities. J Wind Eng Ind Aerodyn 95(8):715–740CrossRefGoogle Scholar
  10. Chung D, Chan L, MacDonald M, Hutchins N, Ooi A (2015) A fast direct numerical simulation method for characterising hydraulic roughness. J Fluid Mech 773:418–431CrossRefGoogle Scholar
  11. Claus J, Coceal O, Thomas T, Branford S, Belcher S, Castro I (2012) Wind-direction effects on urban-type flows. Boundary-Layer Meteorol 142(2):265–287CrossRefGoogle Scholar
  12. Coceal O, Belcher S (2004) A canopy model of mean winds through urban areas. Q J R Meteorol Soc 130(599):1349–1372CrossRefGoogle Scholar
  13. Coles D (1956) The law of the wake in the turbulent boundary layer. J Fluid Mech 1(02):191–226CrossRefGoogle Scholar
  14. Counehan J (1971) Wind tunnel determination of the roughness length as a function of the fetch and the roughness density of three-dimensional roughness elements. Atmos Environ 5(8):637–642CrossRefGoogle Scholar
  15. Di Sabatino S, Solazzo E, Paradisi P, Britter R (2008) A simple model for spatially-averaged wind profiles within and above an urban canopy. Boundary-Layer Meteorol 127(1):131–151CrossRefGoogle Scholar
  16. Flack KA, Schultz MP (2010) Review of hydraulic roughness scales in the fully rough regime. J Fluid Eng 132(4):041203–041203-10Google Scholar
  17. Flack KA, Schultz MP, Connelly JS (2007) Examination of a critical roughness height for outer layer similarity. Phys Fluids 19(9):095104CrossRefGoogle Scholar
  18. Giometto M, Christen A, Meneveau C, Fang J, Krafczyk M, Parlange M (2016) Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface. Boundary-Layer Meteorol 160(3):425–452CrossRefGoogle Scholar
  19. Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Metereol 38(9):1262–1292CrossRefGoogle Scholar
  20. Hagishima A, Tanimoto J, Nagayama K, Meno S (2009) Aerodynamic parameters of regular arrays of rectangular blocks with various geometries. Boundary-Layer Meteorol 132(2):315–337CrossRefGoogle Scholar
  21. Hobbs D, Macdonald R, Walker S (1996) Measurements of dispersion within simulated urban arrays: a small scale wind tunnel study. Building Research EstablishmentGoogle Scholar
  22. Hunter L, Johnson G, Watson I (1992) An investigation of three-dimensional characteristics of flow regimes within the urban canyon. Atmos Environ Part B Urban Atmos 26(4):425–432CrossRefGoogle Scholar
  23. Jackson P (1981) On the displacement height in the logarithmic velocity profile. J Fluid Mech 111:15–25CrossRefGoogle Scholar
  24. Jiang D, Jiang W, Liu H, Sun J (2008) Systematic influence of different building spacing, height and layout on mean wind and turbulent characteristics within and over urban building arrays. Wind Struct 11(4):275–289CrossRefGoogle Scholar
  25. Jiménez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36(1):173–196CrossRefGoogle Scholar
  26. Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parametrization for real urban surfaces. Boundary-Layer Meteorol 148(2):357–377CrossRefGoogle Scholar
  27. Kim BG, Lee C, Joo S, Ryu KC, Kim S, You D, Shim WS (2011) Estimation of roughness parameters within sparse urban-like obstacle arrays. Boundary-Layer Meteorol 139(3):457–485CrossRefGoogle Scholar
  28. Lee JH, Sung HJ, Krogstad PÅ (2011) Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J Fluid Mech 669:397–431CrossRefGoogle Scholar
  29. Leonardi S, Castro IP (2010) Channel flow over large cube roughness: a direct numerical simulation study. J Fluid Mech 651:519–539CrossRefGoogle Scholar
  30. Letchford C, Lander D, Case P, Dyson A, Amitay M (2016) Bio-mimicry inspired tall buildings: the response of cactus-like buildings to wind action at reynolds number of 104. J Wind Eng Ind Aerodyn 150:22–30CrossRefGoogle Scholar
  31. Lettau H (1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. J Appl Meteorol 8(5):828–832CrossRefGoogle Scholar
  32. Lien F, Yee E, Wilson JD (2005) Numerical modelling of the turbulent flow developing within and over a 3-d building array, part II: a mathematical foundation for a distributed drag force approach. Boundary-Layer Meteorol 114(2):245–285CrossRefGoogle Scholar
  33. Macdonald R (2000) Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol 97(1):25–45CrossRefGoogle Scholar
  34. Macdonald R, Griffiths R, Hall D (1998) An improved method for the estimation of surface roughness of obstacle arrays. Atmos Environ 32(11):1857–1864CrossRefGoogle Scholar
  35. McKeon B, Li J, Jiang W, Morrison J, Smits A (2004) Further observations on the mean velocity distribution in fully developed pipe flow. J Fluid Mech 501:135–147CrossRefGoogle Scholar
  36. Meinders E, Hanjalić K (1999) Vortex structure and heat transfer in turbulent flow over a wall-mounted matrix of cubes. Int J Heat Fluid Flow 20(3):255–267CrossRefGoogle Scholar
  37. Millward-Hopkins JT, Tomlin AS, Ma L, Ingham D, Pourkashanian M (2011) Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights. Boundary-Layer Meteorol 141(3):443–465CrossRefGoogle Scholar
  38. Mittal R, Dong H, Bozkurttas M, Najjar F, Vargas A, von Loebbecke A (2008) A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J Comput Phys 227(10):4825–4852CrossRefGoogle Scholar
  39. Monkewitz PA, Chauhan KA, Nagib HM (2007) Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers. Phys Fluids 19(11):115101CrossRefGoogle Scholar
  40. Moody LF (1944) Friction factors for pipe flow. Trans ASME 66(8):671–684Google Scholar
  41. Nagib HM, Chauhan KA (2008) Variations of von Kármán coefficient in canonical flows. Phys Fluids 20(10):1518CrossRefGoogle Scholar
  42. Napoli E, Armenio V, De Marchis M (2008) The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows. J Fluid Mech 613:385–394CrossRefGoogle Scholar
  43. Nikuradse J (1933) Laws of flow in rough pipes. NACA Technical Memorandum 1292Google Scholar
  44. Oke T (1988) Street design and urban canopy layer climate. Energy Builds 11(13):103–113CrossRefGoogle Scholar
  45. Pardyjak ER, Speckart S, Yin F, Veranth J (2008) Near source deposition of vehicle generated fugitive dust on vegetation and buildings: model development and theory. Atmos Environ 42(26):6442–6452CrossRefGoogle Scholar
  46. Perry AE, Schofield WH, Joubert PN (1969) Rough wall turbulent boundary layers. J Fluid Mech 37(02):383–413CrossRefGoogle Scholar
  47. Placidi M, Ganapathisubramani B (2015) Effects of frontal and plan solidities on aerodynamic parameters and the roughness sublayer in turbulent boundary layers. J Fluid Mech 782:541–566CrossRefGoogle Scholar
  48. Raupach M, Antonia R, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44(1):1–25CrossRefGoogle Scholar
  49. Reynolds RT, Castro IP (2008) Measurements in an urban-type boundary layer. Exp Fluids 45(1):141–156CrossRefGoogle Scholar
  50. Röckle R (1990) Bestimmung der Strömungsverhältnisse im Bereich komplexer Bebauungsstrukturen. PhD dissertation, Vom Fachbereich Mechanik, der Technischen Hochschule Darmstadt, GermanyGoogle Scholar
  51. Sadique J, Yang XIA, Meneveau C, Mittal R (2015) Simulation of boundary layer flows over biofouled surfaces. In: 22nd AIAA computational fluid dynamics conference, AIAA Aviation, AIAA-2015-2616. American Institute of Aeronautics and Astronautics, RestonGoogle Scholar
  52. Schlichting H (1937) Experimental investigation of the problem of surface roughness. NACA Technical Memorandum 823Google Scholar
  53. Schultz MP, Flack KA (2009) Turbulent boundary layers on a systematically varied rough wall. Phys Fluids 21(1):015104CrossRefGoogle Scholar
  54. Seo JH, Mittal R (2011) A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J Comput Phys 230(19):7347–7363CrossRefGoogle Scholar
  55. Shao Y, Yang Y (2005) A scheme for drag partition over rough surfaces. Atmos Environ 39(38):7351–7361CrossRefGoogle Scholar
  56. Singh B, Hansen BS, Brown MJ, Pardyjak ER (2008) Evaluation of the QUIC-URB fast response urban wind model for a cubical building array and wide building street canyon. Environ Fluid Mech 8(4):281–312CrossRefGoogle Scholar
  57. Stoll R, Porté-Agel F (2006) Effect of roughness on surface boundary conditions for large-eddy simulation. Boundary-Layer Meteorol 118(1):169–187CrossRefGoogle Scholar
  58. Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R, Scott JR, Wilkens-Diehr N (2014) XSEDE: accelerating scientific discovery. Comput Sci Eng 16(5):62–74CrossRefGoogle Scholar
  59. Vedula V, Fortini S, Seo J, Querzoli G, Mittal R (2014) Computational modeling and validation of intraventricular flow in a simple model of the left ventricle. Theor Comput Fluid Dyn 28(6):589–604CrossRefGoogle Scholar
  60. Vreman A (2004) An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys Fluids 16(10):3670–3681CrossRefGoogle Scholar
  61. Wygnanski I, Champagne F, Marasli B (1986) On the large-scale structures in two-dimensional, small-deficit, turbulent wakes. J Fluid Mech 168:31–71CrossRefGoogle Scholar
  62. Yang XIA (2016) On the mean flow behaviour in the presence of regional-scale surface roughness heterogeneity. Boundary-Layer Meteorol 161(1):127–143CrossRefGoogle Scholar
  63. Yang XIA, Meneveau C (2016a) Large eddy simulations and parameterisation of roughness element orientation and flow direction effects in rough wall boundary layers. J Turbul 17(11):1072–1085CrossRefGoogle Scholar
  64. Yang XIA, Meneveau C (2016b) Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces. J Turbul 17(1):75–93Google Scholar
  65. Yang XIA, Sadique J, Mittal R, Meneveau C (2015) Integral wall model for large eddy simulations of wall-bounded turbulent flows. Phys Fluids 27(2):025,112Google Scholar
  66. Yang XIA, Sadique J, Mittal R, Meneveau C (2016) Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J Fluid Mech 789:127–165CrossRefGoogle Scholar
  67. You D, Moin P (2007) A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Phys Fluids 19(6):065110CrossRefGoogle Scholar
  68. Yuan J, Piomelli U (2014) Estimation and prediction of the roughness function on realistic surfaces. J Turbul 15(6):350–365CrossRefGoogle Scholar
  69. Zaki SA, Hagishima A, Tanimoto J, Ikegaya N (2011) Aerodynamic parameters of urban building arrays with random geometries. Boundary-Layer Meteorol 138(1):99–120CrossRefGoogle Scholar
  70. Zheng L, Hedrick TL, Mittal R (2013) A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight. J Fluid Mech 721:118–154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jasim Sadique
    • 1
  • Xiang I. A. Yang
    • 1
  • Charles Meneveau
    • 1
  • Rajat Mittal
    • 1
  1. 1.Department of Mechanical EngineeringThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations