Boundary-Layer Meteorology

, Volume 163, Issue 1, pp 69–89 | Cite as

Comparison of Measured and Numerically Simulated Turbulence Statistics in a Convective Boundary Layer Over Complex Terrain

  • Raj K. Rai
  • Larry K. Berg
  • Branko Kosović
  • Jeffrey D. Mirocha
  • Mikhail S. Pekour
  • William J. Shaw
Research Article

Abstract

The Weather Research and Forecasting (WRF) model can be used to simulate atmospheric processes ranging from quasi-global to tens of m in scale. Here we employ large-eddy simulation (LES) using the WRF model, with the LES-domain nested within a mesoscale WRF model domain with grid spacing decreasing from 12.15 km (mesoscale) to 0.03 km (LES). We simulate real-world conditions in the convective planetary boundary layer over an area of complex terrain. The WRF-LES model results are evaluated against observations collected during the US Department of Energy-supported Columbia Basin Wind Energy Study. Comparison of the first- and second-order moments, turbulence spectrum, and probability density function of wind speed shows good agreement between the simulations and observations. One key result is to demonstrate that a systematic methodology needs to be applied to select the grid spacing and refinement ratio used between domains, to avoid having a grid resolution that falls in the grey zone and to minimize artefacts in the WRF-LES model solutions. Furthermore, the WRF-LES model variables show large variability in space and time caused by the complex topography in the LES domain. Analyses of WRF-LES model results show that the flow structures, such as roll vortices and convective cells, vary depending on both the location and time of day as well as the distance from the inflow boundaries.

Keywords

Complex terrain Convective boundary layer Multiple nesting Turbulent scales Weather Research and Forecasting–large-eddy simulation model 

Supplementary material

10546_2016_217_MOESM1_ESM.pdf (182 kb)
Supplementary material 1 (pdf 182 KB)

References

  1. Aitken ML, Kosović B, Mirocha JD, Lundquist JK (2014) Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting model. J Renew Sust Energy 6:033137CrossRefGoogle Scholar
  2. Beare RJ, Macvean MK, Holtslag AAM, Cuxart J, Esau I, Golaz J, Jimenez MA, Khairoutdinov M, Kosović B, Lewellen D, Lund TS, Lundquist JK, Mccabe A, Moene AF, Noh Y, Raasch S, Sullivan P (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118:247–272CrossRefGoogle Scholar
  3. Berg LK, Pekour M, Nelson D (2012) Description of the Columbia Basin Wind Energy Study (CBWES). Technical report PNNL-22036, Pacific Northwest National Laboratory, Richland, Washington, USAGoogle Scholar
  4. Beyrich F (1997) Mixing height estimation from sodar data—a critical discussion. Atmos Environ 31(23):3941–3953CrossRefGoogle Scholar
  5. Bou-Zeid E, Meneveau C, Parlange MB (2004) Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour Res 40:W02505CrossRefGoogle Scholar
  6. Calaf M, Meneveau C, Meyers J (2010) Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys Fluids 22:015110CrossRefGoogle Scholar
  7. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585CrossRefGoogle Scholar
  8. Ching J, Rotunno R, Lemone M, Martilli A, Kosović B, Jimenez PA, Dudhia J (2014) Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon Weather Rev 142:3284–3302CrossRefGoogle Scholar
  9. Chow FK, Street RL, Xue M, Ferziger JH (2005) Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J Atmos Sci 62:2058–2077CrossRefGoogle Scholar
  10. Churchfield MJ, Lee S, Michalakes J, Moriarty PJ (2012) A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J Turbul 13(14):1–32Google Scholar
  11. Deardorff JW (1972) Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29:91–115CrossRefGoogle Scholar
  12. Grossman RL (1982) An analysis of vertical velocity spectra obtained in the BOMEX fair-weather, trade-wind boundary layer. Boundary-Layer Meteorol 23:323–357CrossRefGoogle Scholar
  13. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341CrossRefGoogle Scholar
  14. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113(D13103). doi:10.1029/2008JD009944
  15. Kosović B, Curry JA (2000) A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J Atmos Sci 57:1052–1068CrossRefGoogle Scholar
  16. LeMone MA (1973) The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J Atmos Sci 30:1077–1091CrossRefGoogle Scholar
  17. Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In: Procedings IBM scientific computing symposium on environmental sciences, 14–16 Nov, Yorktown Heights, NYGoogle Scholar
  18. Liu Y, Warner T, Liu Y, Vincent C, Wu W, Mahoney B, Swerdlin S, Parks K, Boehnert J (2011) Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications. J Wind Eng Ind Aerodyn 99:308–319CrossRefGoogle Scholar
  19. Mason PJ (1989) Large-eddy simulation of the convective atmospheric boundary layer. J Atmos Sci 46(11):1492–1516CrossRefGoogle Scholar
  20. Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Jović D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W (2006) North american regional reanalysis. Bull Am Meteorol Soc 87(3):343–360CrossRefGoogle Scholar
  21. Mirocha JD, Lundquist JK, Kosović B (2010) Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the advanced research WRF model. Mon Weather Rev 138:4212–4228CrossRefGoogle Scholar
  22. Mirocha JD, Kosović B, Aitken ML, Lundquist JK (2014a) Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications. J Renew Sust Energy 6:013104CrossRefGoogle Scholar
  23. Mirocha JD, Kosović B, Kirkil G (2014b) Resolved turbulence characteristics in large-eddy simulations nested within mesoscale simulations using the weather research and forecasting model. Mon Weather Rev 142:806–831CrossRefGoogle Scholar
  24. Moeng CH (1984) A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41(13):2052–2062CrossRefGoogle Scholar
  25. Moeng CH, Sullivan PP (1994) A comparison of shear- and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51(7):999–1022CrossRefGoogle Scholar
  26. Moeng CH, Dudhia J, Klemp J, Sullivan P (2007) Examining two-way grid nesting for large eddy simulation of the pbl using the WRF model. Mon Weather Rev 135:2295–2311CrossRefGoogle Scholar
  27. Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes. Mon Weather Rev 137:991–1007CrossRefGoogle Scholar
  28. Muñoz-Esparza D, Kosović B, Mirocha J, Beeck JV (2014) Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Boundary-Layer Meteorol 153:409–440CrossRefGoogle Scholar
  29. Nakanishi M, Niino H (2006) An improved Mellor–Yamada level-3 model: its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorol 119:397–407CrossRefGoogle Scholar
  30. Noh Y, Cheon WG, Hong SY, Raasch S (2003) Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Boundary-Layer Meteorol 107:401–427CrossRefGoogle Scholar
  31. Porté-Agel F, Meneveau C, Parlange MB (2000) A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415:261–284CrossRefGoogle Scholar
  32. Porté-Agel F, Wu Y, Lu H, Conzemius RJ (2011) Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J Wind Eng Ind Aerodyn 99:154–168CrossRefGoogle Scholar
  33. Rai RK, Gopalan H, Naughton JW (2016) Effects of spatial and temporal resolution of the turbulent inflow on wind turbine performance estimation. Wind Energy 19:1341–1354CrossRefGoogle Scholar
  34. Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027CrossRefGoogle Scholar
  35. Skamarock WC (2004) Evaluating mesoscale NWP models using kinetic energy spectra. Mon Weather Rev 132:3019–3032CrossRefGoogle Scholar
  36. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF Version 3. Technical report NCAR/TN-475+STR, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USAGoogle Scholar
  37. Stull RB (1988) An introduction to boundary layer meteorology, vol 13. Springer, New YorkCrossRefGoogle Scholar
  38. Sykes RI, Henn DS (1989) Large-eddy simulation of turbulent sheared convection. J Atmos Sci 46(8):1106–1118CrossRefGoogle Scholar
  39. Talbot C, Bou-Zeid E, Smith J (2012) Nested mesoscale large-eddy simulations with WRF: performance in real test cases. J Hydrometeorol 13:1421–1441CrossRefGoogle Scholar
  40. Weckwerth TM, Wilson JW, Wakimoto RM, Crook NA (1997) Horizontal convective rolls: determining the environmental conditions supporting their existence and characteristics. Mon Weather Rev 125:505–526CrossRefGoogle Scholar
  41. Wyngaard JC (2004) Toward numerical modeling in the “Terra Incognita”. J Atmos Sci 61:1816–1826CrossRefGoogle Scholar
  42. Yang Q, Berg LK, Pekour M, Fast JD, Newsom RK, Stoelinga M, Finley C (2013) Evaluation of WRF-predicted near-hub-height winds and ramp events over a Pacific Northwest site with Complex Terrain. J Appl Meteorol Clim 52:1753–1763CrossRefGoogle Scholar
  43. Zhou B, Simon JS, Chow FK (2014) The convective boundary layer in the Terra Incognita. J Atmos Sci 71:2545–2563CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2016

Authors and Affiliations

  • Raj K. Rai
    • 1
  • Larry K. Berg
    • 1
  • Branko Kosović
    • 2
  • Jeffrey D. Mirocha
    • 3
  • Mikhail S. Pekour
    • 1
  • William J. Shaw
    • 1
  1. 1.Pacific Northwest National Laboratory (PNNL)RichlandUSA
  2. 2.National Center for Atmospheric Research (NCAR)BoulderUSA
  3. 3.Lawrence Livermore National Laboratory (LLNL)LivermoreUSA

Personalised recommendations