Boundary-Layer Meteorology

, Volume 162, Issue 2, pp 207–230 | Cite as

Measurements and Computations of Flow in an Urban Street System

  • Ian P. Castro
  • Zheng-Tong Xie
  • V. Fuka
  • Alan G. Robins
  • M. Carpentieri
  • P. Hayden
  • D. Hertwig
  • O. Coceal
Research Article

Abstract

We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models.

Keywords

Direct numerical simulation Large-eddy simulation Urban environment Wind-tunnel modelling 

References

  1. Balogun AA, Tomlin AS, Wood CR, Barlow JF, Belcher SE, Smalley RJ, Lingard JJN, Arnold SJ, Dobre A, Robins AG, Martin D, Shallcross DE (2010) In-street wind direction variability in the vicinity of a busy intersection in Central London. Boundary-Layer Meteorol 136:489–513CrossRefGoogle Scholar
  2. Belcher S, Coceal O, Goulart EV, Rudd AC, Robins AG (2015) Processes controlling atmospheric dispersion through city centres. J Fluid Mech 763:51–81CrossRefGoogle Scholar
  3. Belcher SE, Coceal O, Hunt JCR, Carruthers DJ, Robins AG (2013) A review of urban dispersion modelling. Atmospheric dispersion modelling liaison committee, Report ADMLC-87, Annex 8, p 94Google Scholar
  4. Carpentieri M, Robins AG (2010) Tracer flux balance at an urban canyon intersection. Boundary-Layer Meteorol 135:229–242CrossRefGoogle Scholar
  5. Carpentieri M, Robins AG, Baldi S (2009) Three-dimensional mapping of air flow at an urban canyon intersection. Boundary-Layer Meteorol 133:277–296CrossRefGoogle Scholar
  6. Cheng H, Castro IP (2002) Near-wall flow over urban-type roughness. Boundary-Layer Meteorol 104:229–259CrossRefGoogle Scholar
  7. Cionco RM (1965) Mathematical model for air-flow in a vegetative canopy. J Appl Meteorol 4:517–522CrossRefGoogle Scholar
  8. Claus J, Coceal O, Thomas TG, Branford S, Belcher SE, Castro IP (2012) Wind direction effects on urban flows. Boundary-Layer Meteorol 142:265–287CrossRefGoogle Scholar
  9. Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol 121:491–519CrossRefGoogle Scholar
  10. Coceal O, Dobre A, Thomas TG, Belcher SE (2007) Structure of turbulent flow over regular arrays of cubical roughness. J Fluid Mech 589:375–409CrossRefGoogle Scholar
  11. Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41:453–480CrossRefGoogle Scholar
  12. Fishpool GM, Lardeau S, Leschziner MA (2009) Persistent non-homogeneous features in periodic channel-flow simulations. Flow Turbul Combust 83:323–342CrossRefGoogle Scholar
  13. Hanna SR, Tehranian S, Carissimo B, MacDonald RW, Lohner R (2002) Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmos Environ 36:5067–5079CrossRefGoogle Scholar
  14. Inagaki M, Kondoh T, Nagano Y (2005) A mixed-time-scale SGS model with fixed model parameters for practical LES. J Fluids Eng 127:1–13CrossRefGoogle Scholar
  15. Jackson PS (1981) On the displacement height in the logarithmic velocity profile. J Fluid Mech 111:15–25CrossRefGoogle Scholar
  16. Kanda M, Moriwaki R, Kasamatsu F (2004) Large-Eddy simulation of turbulent organised structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol 112:343–368CrossRefGoogle Scholar
  17. Klein P, Young DT (2011) Concentration fluctuations in a downtown urban area. Part I: analysis of Joint Urban 2003 full-scale fast-response measurements. Environ Fluid Mech 11:23–43CrossRefGoogle Scholar
  18. Leonardi S, Castro IP (2010) Channel flow over large roughness: a direct numerical simulation study. J Fluid Mech 651:519–539CrossRefGoogle Scholar
  19. MacDonald R (2000) Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol 97:25–45CrossRefGoogle Scholar
  20. Marusic I, Monty JP, Hultmark M, Smits AJ (2013) On the logarithmic region in wall turbulence. J Fluid Mech 713:R3–1–R3–10Google Scholar
  21. Moonen P, Gromke C, Dorer V (2013) Performance assessment of large eddy simulation (LES) for modelling dispersion in an urban street canyon with tree planting. Atmos Environ 75:66–76CrossRefGoogle Scholar
  22. Schatzmann M, Leitl B (2011) Issues with validation of urban flow and dispersion CFD models. J Wind Eng Ind Aerodyn 99:169–186CrossRefGoogle Scholar
  23. Smolarkiewicz PK, Sharman R, Weil J, Perry SG, Heijst D, Bowker G (2007) Building resolving large-eddy simulations and comparison with wind tunnel experiments. J Comput Phys 227:633–653CrossRefGoogle Scholar
  24. Soulhac L, Salizzoni P, Cierco FX, Perkins R (2011) The model SIRANE for atmospheric urban pollutant dispersion; Part 1. presentation of the model. Atmos Environ 45:7379–7395CrossRefGoogle Scholar
  25. Tominaga Y, Stathopoulos T (2013) CFD dimulations of near-field pollutant dispersion in the urban environment: a review of current modelling techniques. Atmos Environ 79:716–730CrossRefGoogle Scholar
  26. Wood C, Arnold SJ, Balogan AA, Barlow JF, Belcher SE, Britter RE, Cheng H, Dobre A, Lingard JN, Martin D, Neophytou MK, Petersson FK, Robins AG, Shallcross DE, Smalley RJ, Tate JE, Tomlin AS, White IR (2009) Dispersion experiments in central London; the 2007 Dapple project. Bull Am Meteorol Soc 90:955–969CrossRefGoogle Scholar
  27. Xie ZT, Castro IP (2006) LES and RANS for turbulent flow over arrays of wall-mounted cubes. Flow Turb Combust 76:293–312CrossRefGoogle Scholar
  28. Xie ZT, Castro IP (2009) Large-Eddy Simulation for flow and dispersion in urban streets. Atmos Environ 43(13):2174–2185CrossRefGoogle Scholar
  29. Yang XIA, Sadique J, Mittal R, Meneveau C (2016) Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J Fluid Mech 789:127–165CrossRefGoogle Scholar
  30. Yao YF, Thomas TG, Sandham ND, Williams JJR (2001) Direct numerical simulation of turbulent flow over a rectangular trailing edge. Theor Comput Fluid Dyn 14:337–358CrossRefGoogle Scholar
  31. Yassin MF, Kato S, Ooka R, Takahashi T, Kouna R (2005) Field and wind-tunnel study of pullutant dispersion in a built-up area under various meteorological conditions. J Wind Eng Ind Aerodyn 93:361–382CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ian P. Castro
    • 1
  • Zheng-Tong Xie
    • 1
  • V. Fuka
    • 1
  • Alan G. Robins
    • 2
  • M. Carpentieri
    • 2
  • P. Hayden
    • 2
    • 4
  • D. Hertwig
    • 3
  • O. Coceal
    • 3
    • 4
  1. 1.Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
  2. 2.EnFlo, Department of Mechanical Engineering SciencesUniversity of SurreySurreyUK
  3. 3.Department of MeteorologyUniversity of ReadingReadingUK
  4. 4.National Centre for Atmospheric ScienceLeedsUK

Personalised recommendations