Boundary-Layer Meteorology

, Volume 162, Issue 2, pp 341–367 | Cite as

Momentum- and Heat-Flux Parametrization at Dome C, Antarctica: A Sensitivity Study

  • Etienne VignonEmail author
  • Christophe Genthon
  • Hélène Barral
  • Charles Amory
  • Ghislain Picard
  • Hubert Gallée
  • Giampietro Casasanta
  • Stefania Argentini
Research Article


An extensive meteorological observational dataset at Dome C, East Antarctic Plateau, enabled estimation of the sensitivity of surface momentum and sensible heat fluxes to aerodynamic roughness length and atmospheric stability in this region. Our study reveals that (1) because of the preferential orientation of snow micro-reliefs (sastrugi), the aerodynamic roughness length \(z_{0}\) varies by more than two orders of magnitude depending on the wind direction; consequently, estimating the turbulent fluxes with a realistic but constant \(z_{0}\) of 1 mm leads to a mean friction velocity bias of \(24\,\%\) in near-neutral conditions; (2) the dependence of the ratio of the roughness length for heat \(z_{0t}\) to \(z_{0}\) on the roughness Reynolds number is shown to be in reasonable agreement with previous models; (3) the wide range of atmospheric stability at Dome C makes the flux very sensitive to the choice of the stability functions; stability function models presumed to be suitable for stable conditions were evaluated and shown to generally underestimate the dimensionless vertical temperature gradient; as these models differ increasingly with increases in the stability parameter z / L, heat flux and friction velocity relative differences reached \(100\,\%\) when \(z/L > 1\); (4) the shallowness of the stable boundary layer is responsible for significant sensitivity to the height of the observed temperature and wind data used to estimate the fluxes. Consistent flux results were obtained with atmospheric measurements at heights up to 2 m. Our sensitivity study revealed the need to include a dynamical parametrization of roughness length over Antarctica in climate models and to develop new parametrizations of the surface fluxes in very stable conditions, accounting, for instance, for the divergence in both radiative and turbulent fluxes in the first few metres of the boundary layer.


Antarctic Plateau Model parametrizations Roughness length Stable boundary layer Turbulent fluxes 



The authors thank the three anonymous reviewers for their insightful comments. This research was supported by INSU (programs LEFE CLAPA and GABLS4) and OSUG (GLACIOCLIM observatory). Logistical support by the French (IPEV) and Italian (PNRA) polar agencies through ‘programme CALVA’ (1013) and the ‘CoMPASs project’ is gratefully acknowledged. We are particularly grateful to the Concordia Research Station winter-over staff who maintain the instruments year round. The authors thank the BSRN network and Christian Lanconelli for dissemination of the 2010 radiation data, Alessandro Conidi for having provided the recent sonic thermo-anemometer data, Hélène Freville for Dome C photographs and Frédéric Hourdin, Eric Bazile, Patrick Lemoigne, Fleur Couvreux, Olivier Traullé, Bas van de Wiel and Ivo van Hooijdonk for fruitful discussions. Further information on the CALVA meteorological program is available at ‘’.


  1. Amory C, Gallée H, Naaim-Bouvet F, Favier V, Vignon E, Picard G, Trouvilliez A, Piard L, Genthon C, Bellot H (2016a) Seasonal variations in drag coefficients over a sastrugi-covered snowfield of coastal East Antarctica. Boundary-Layer Meteorol (in press)Google Scholar
  2. Amory C, Gallée H, Naaim-Bouvet F, Vignon E (2016b) Brief communication: two well-marked cases of sastrugi aerodynamical adjustment. Cryosphere 10:1–8. doi: 10.5194/tc-10-743-2016
  3. Anderson PS (2009) Measurement of Prandtl number as a function of Richardson number avoiding self-correlation. Boundary-Layer Meteorol 131:345–362CrossRefGoogle Scholar
  4. Andreas EL (1987) A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorol 38:159–184CrossRefGoogle Scholar
  5. Andreas EL (2002) Parametrizing scalar transfer over snow and ice: a review. J Hydrometeorol 3:417–432CrossRefGoogle Scholar
  6. Andreas EL (2011) The fallacy of drifting snow. Boundary-Layer Meteorol 141:333–347. doi: 10.1007/s10546-011-9647-8 CrossRefGoogle Scholar
  7. Angot H, Magand O, Helmig D, Ricaud P, Quennehen B, Gallée H, Del Guasta M, Sprovieri F, Pirrone N, Savarino J, Dommergue A (2016) New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale. Atmos Chem Phys 16:8249–8264. doi: 10.5194/acp-16-8249-2016 CrossRefGoogle Scholar
  8. Argentini S, Viola A, Sempreviva AM, Petenko I (2005) Summer boundary-layer height at the plateau site of Dome C, Antarctica. Boundary-Layer Meteorol 115:409–422. doi: 10.1007/s10546-004-5643-6 CrossRefGoogle Scholar
  9. Argentini S, Pietroni I, Mastrantonio G, Viola A, Dargaud G, Petenko I (2014) Observations of near surface wind speed, temperature and radiative budget at Dome C, Antarctic Plateau during 2005. Antarct Sci 26:104–112. doi: 10.1017/S0954102013000382 CrossRefGoogle Scholar
  10. Aristidi E, Agabi K, Azouit M, Fossat E, Vernin J, Travouillon T, Lawrence JS, Meyer C, Storey JWV, Halter B, Roth WL, Walden V (2005) An analysis of temperatures and wind speeds above Dome C, Antarctica. Astron Astrophys 430:739–746. doi: 10.1051/0004-6361:20041876 CrossRefGoogle Scholar
  11. Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in flux–gradient relationships for stably stratified conditions. J Atmos Sci 63:3045–3054CrossRefGoogle Scholar
  12. Barral H, Genthon C, Trouvilliez A, Brun C, Amory C (2014a) Blowing snow at D17, Adélie Land, Antarctica: atmospheric moisture issues. Cryosphere 8:1905–1919. doi: 10.5194/tc-8-1905-2014
  13. Barral H, Vignon E, Bazile E, Traullé O, Gallée H, Genthon C, Brun C, Couvreux F, Le Moigne P (2014b) Summer diurnal cycle at Dome C on the Antarctic plateau. In: Proceeding of the AMS 21st symposium on boundary layers and turbulenceGoogle Scholar
  14. Berkowicz R, Prahm LP (1982) Evaluation of the profile method for estimation of surface fluxes of momentum and heat. Atmos Environ 16(12):2809–2819CrossRefGoogle Scholar
  15. Bintanja R, Van den Broeke MR (1995) Momentum and scalar transfer coefficients over aerodynamically smooth Antarctic surfaces. Bounday-Layer Meteorol 74:89–111CrossRefGoogle Scholar
  16. Brun E, Six D, Picard G, Vionnet V, Arnaud L, Bazile E, Boone A, Bouchard A, Genthon C, Guidars V, Le Moigne P, Rabier F, Seity Y (2012) Snow/atmosphere coupled simulation at Dome C, Antarctica. J Glaciol 52:721–726Google Scholar
  17. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189CrossRefGoogle Scholar
  18. Carroll JJ (1982) Long-term means and short-term variability of the surface energy balance components at the South Pole. J Geophys Res 87:4277–4786CrossRefGoogle Scholar
  19. Casasanta G, Pietroni I, Petenko I, Argentini S (2014) Observed and modelled convective mixing-layer height at Dome C, Antarctica. Bounday-Layer Meteorol 151:587–608. doi: 10.1007/s10546-014-9907-5 Google Scholar
  20. Cassano JJ, Parish TR, King JC (2001) Evaluation of turbulent surface flux parameterizations for the stable surface layer over Halley, Antarctica. Mon Weather Rev 129:26–46CrossRefGoogle Scholar
  21. Champollion N, Picard G, Arnaud L, Lefebvre E, Fily M (2013) Hoard crystal development and disappearnce at Dome C, Antarctica: observation by near-infrared photography and passive microwave satellite. Cryosphere 7:1247–1262. doi: 10.5194/tc-7-1247-2013 CrossRefGoogle Scholar
  22. Colbeck SC (1989) Air movement in snow due to wind pumping. J Glaciol 35(120):209–213Google Scholar
  23. Connolley WM (1996) The Antarctic temperature inversion. Int J Climatol 16:1333–1342CrossRefGoogle Scholar
  24. Dalrymphe PC, Lettau H, Wollaston S (1966) South Pole micrometeorology program in studies in Antarctic meteorology. American Geophysical Union, Washington DCGoogle Scholar
  25. Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  26. Dommergue A, Barret M, Courteaud J, Cristofanelli P, Ferrari CP, Gallée H (2012) Dynamic recycling of gaseous elemental mercury in the boundary layer of the Antarctic plateau. Atmos Chem Phys 12:11,027–11,036. doi: 10.5194/acp-12-11027-2012 CrossRefGoogle Scholar
  27. Dutra E, Sandu I, Balsamo G, Beljaars A, Freville H, Vignon E, Brun E (2015) Understanding the ECMWF winter surface temperature biases over Antarctica. European Center for Medium range Weather Forecast Technical Memorandum 762Google Scholar
  28. Estournel C, Guedalia D (1985) Influence of geostrophic wind on atmospheric nocturnal cooling. J Atmos Sci 42(23):2695–2698CrossRefGoogle Scholar
  29. Freville H, Brun E, Picard G, Tatarinova N, Arnaud L, Lanconelli C, Reijmer C, van den Broeke M (2014) Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica. Cryosphere 8:1361–1373. doi: 10.5194/tc-8-1361-2014 CrossRefGoogle Scholar
  30. Frey MM, Roscoe HK, Kukui S, Savarino J, France JL, King MD, Legrand M, Preunkert S (2014) Atmospheric nitrogen oxides (NO and NO\(_2\)) at Dome C, East Antarctica, during the OPALE campaign. Atmos Chem Phys 15:7859–7875. doi: 10.5194/acp-15-7859-2015 CrossRefGoogle Scholar
  31. Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi MTR, Udisti R, Fily M (2004) New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Clim Dyn 23:803–813. doi: 10.1007/s00382-004-0462-5 CrossRefGoogle Scholar
  32. Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi MTR, Traversi R, Udisti R, Fily M (2005) Spatial and temporal variability of snow accumulation in East Antarctica from traverse data. J Glaciol 51(72):113–122CrossRefGoogle Scholar
  33. Gallée H, Gorodetskaya I (2010) Validation of a limited area model over Dome C, Antarctic Plateau, during winter. Clim Dyn 23:61–72. doi: 10.1007/s00382-008-0499-y CrossRefGoogle Scholar
  34. Gallée H, Guyomarch’h G, Brun E (2001) Impact of snow drift on the Antarctic ice sheet surface mass balance. Possible sensitivity to snow surface properties. Boundary-Layer Meteorol 99:1–19CrossRefGoogle Scholar
  35. Gallée H, Barral H, Vignon E, Genthon C (2015) A case study of a low level jet during OPALE. Atmos Chem Phys 15. doi: 10.5194/acp-15-1-2015
  36. Gallée H, Preunkert S, Argentini S, Frey MM, Genthon C, Jourdain B, Pietroni I, Casasanta G, Barral H, Vignon E, Legrand M, Amory C (2015) Characterization of the boundary layer at Dome C (East Antarctica) during the OPALE summer campaign. Atmos Chem Phys 15:6225–6236. doi: 10.5194/acp-15-6225-2015 CrossRefGoogle Scholar
  37. Garratt JR, Brost RA (1981) Radiative cooling effects within and above the nocturnal boundary layer. J Atmos Sci 38:2370–2745CrossRefGoogle Scholar
  38. Genthon C, Town MS, Six D, Favier V, Argentini S, Pellegrini A (2010) Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica. J Geophys Res 115. doi: 10.1029/2009JD012741
  39. Genthon C, Six D, Favier V, Lazzara M, Keller L (2011) Atmospheric temperature measurement biases on the Antarctic plateau. J Atmos Ocean Technol 28:1598–1605CrossRefGoogle Scholar
  40. Genthon C, Six D, Gallée H, Grigioni P, Pellegrini A (2013) Two years of atmospheric boundary layer observations on a 45-m tower at Dome C on the antarctic plateau. J Geophys Res Atmos 118. doi: 10.1002/jgrd.50128
  41. Genthon C, Six D, Scarchilli C, Ciardini V, Frezzotti M (2015) Meteorological and snow accumulation gradients across Dome C. Int J Climatol (Published online in Wiley Online Library, East Antarctic plateau). doi: 10.1002/joc.4362
  42. Georgiadis T, Argentini S, Mastrantonio G, Viola A, Dargaud G, Sozzi R (2002) Boundary layer convective-like activity at Dome Concordia, Antarctica. Nuovo Cimento Soc Ital Fis 25:425–431Google Scholar
  43. Gow AJ (1965) On the accumulation and seasonal stratification of snow at the south pole. J Glaciol 5(40):467–477Google Scholar
  44. Grachev AA, Fairall CW, Persson P, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116:201–235. doi: 10.1007/s10546-004-2729-0 CrossRefGoogle Scholar
  45. Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007) SHEBA flux–profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorol 124:315–333. doi: 10.1007/s10546-007-9177-6 CrossRefGoogle Scholar
  46. Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78:215–246CrossRefGoogle Scholar
  47. Hicks BB (1978) Some limitations of dimensional analysis and power laws. Boundary-Layer Meteorol 14:567–569CrossRefGoogle Scholar
  48. Hoch SW, Calanca P, Philipona R, Ohmura A (2007) Year-round observation of longwave radiative flux divergence in Greenland. J Appl Meteorol 46:1469–1479. doi: 10.1175/JAM2542.1 CrossRefGoogle Scholar
  49. Hoinkes HC (1967) Low level inversion at Little America V, 1957. In: Symposium on polar meteorology, Geneva, 5–9 September 1966. Technical Note 87. World Meteorological Organisation, pp 60–79Google Scholar
  50. Holtslag AAM, De Bruin HAR (1988) Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 27:689–703CrossRefGoogle Scholar
  51. Hudson S, Brandt RE (2005) A look at the surface based temperature inversion on the Antarctic plateau. J Clim 118:1673–1696CrossRefGoogle Scholar
  52. Inoue J (1989) Surface drag over the snow surface of the antarctic plateau. 1 Factors controlling surface drag over the katabatic wind region. J Geophys Res 14(D2):2207–2217CrossRefGoogle Scholar
  53. Jackson BS, Carroll JJ (1978) Aerodynamic roughness as a function of wind direction over assymetric surface elements. Boundary-Layer Meteorol 14:323–330CrossRefGoogle Scholar
  54. Joffre SM (1982) Momentum and heat transfer in the surface layer over a frozen sea. Boundary-Layer Meteorol 24:211–229CrossRefGoogle Scholar
  55. King JC (1990) Some measurements of turbulence over an Antarctic ice-shelf. Q J R Meteorol Soc 116:379–400CrossRefGoogle Scholar
  56. King JC, Anderson PS (1994) Heat and water vapour fluxes and scalar roughness lengths over an Antarctic ice shelf. Boundary-Layer Meteorol 69:101–121CrossRefGoogle Scholar
  57. King JC, Anderson PS, Smith MC, Mobbs SD (1996) The surface energy and mass balance at Halley, Antarctica during winter. J Geophys Res 101:119–128CrossRefGoogle Scholar
  58. King JC, Connolley WM, Derbyshire SH (2001) Sensitivity of modelled Antarctic climate to surface and boundary-layer flux parametrizations. Q J R Meteorol Soc 127:779–794CrossRefGoogle Scholar
  59. King JC, Argentini SA, Anderson PS (2006) Contrasts between the summertime surface energy balance and boundary layer structure at Dome C and Halley stations, Antarctica. J Geophys Res 111:D02105. doi: 10.1029/2005JD006130 CrossRefGoogle Scholar
  60. Kovrova AM (1964) Characteristics of surface inversions in Antarctica. Sov Antarct Exped Inf Bull 49:227–228Google Scholar
  61. Kuhn M, Lettau HH, Riordan AJ (1977) Stability-related spiraling in the lowest 32 meters. Meteorol Stud Plateau Stn Antarct Antarct Res Ser 25:93–111CrossRefGoogle Scholar
  62. Lanconelli C, Busetto M, Dutton EG, König-Langlo G, Maturilli M, Sieger R, Vitale V, Yamanouchi T (2011) Polar baseline surface radiation measurements during the international polar year 2007–2009. Earth Syst Sci Data Discuss 3:1–8. doi: 10.5194/essd-3-1-2011 CrossRefGoogle Scholar
  63. Lee X, Massman W, Law B (2004) Handbook of micrometeorology. Kluwer, Dordrecht, 250 ppGoogle Scholar
  64. Legrand M, Preunker S, Jourdain B, Gallée H, Goutail F, Weller R, Savarino J (2009) Year round record of surface ozone at coastal (Dumont d’Urville) and inland (Concordia) sites in East Antarctica. J Geophys Res 114:D20306. doi: 10.1029/2008JD011667 CrossRefGoogle Scholar
  65. Lettau HH (1979) Wind and temperature profile prediction for diabatic surface layers including strong inversion cases. Boundary-Layer Meteorol 17:443–464CrossRefGoogle Scholar
  66. Libois Q (2014) Evolution des propriétés physiques de la neige de surface sur le Plateau Antarctique. PhD Thesis, Université de GrenobleGoogle Scholar
  67. Libois Q, Picard G, Arnaud L, Morin S, Brun E (2014) Modeling the impact of snow drift on the decameter-scale variability of snow properties on the Antarctic Plateau. J Geophys Res Atmos 119:662–681. doi: 10.1002/2014JD022361 CrossRefGoogle Scholar
  68. Lykossov VN, Wamser C (1995) Turbulence intermittency in the atmospheric surface layer over snow-covered sites. Boundary-Layer Meteorol 72:393–409CrossRefGoogle Scholar
  69. Mahrt L (1998) Stratified atmospheric boundary layers and breakdown of models. Theor Comput Fluid Dyn 11:263–279CrossRefGoogle Scholar
  70. Mastrantonio G, Malvestuto V, Argentini S, Georgiadis T, Viola A (1999) Evidence of the convective boundary layer developing on the Antarctic Plateau during the summer. Meteorol Atmos Phys 71:127–132CrossRefGoogle Scholar
  71. Mauritsen T, Svensson G, Zilitinkevich S, Esau I, Enger L, Grisogono B (2007) A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J Atmos Sci 64:4113–4125. doi: 10.1175/2007JAS2294.1 CrossRefGoogle Scholar
  72. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the atmosphere near the ground. Trudy Geofiz Inst 24:163–187Google Scholar
  73. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I—a discussion of principles. J Hydrol 10:282–290CrossRefGoogle Scholar
  74. Ohmura A et al (1998) Baseline surface radiation network (BSRN/WMRC), a new precision radiometry for climate research. Bull Am Meteorol Soc 79:2115–2136CrossRefGoogle Scholar
  75. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861CrossRefGoogle Scholar
  76. Petenko I, Argentini S, Pietroni I, Viola A, Mastrantonio G, Aristidi E, Bouchez G, Agabi A, Bondoux E (2014) Observations of optically active turbulence in the planetary boundary layer by sodar at the Concordia astronomical observatory, Dome C, Antarctica. Astron Astrophys 568:A44. doi: 10.1051/0004-6361/201323299 CrossRefGoogle Scholar
  77. Phillpot HR, Zillman JW (1970) The surface temperature inversion over the Antarctic continent. J Geophys Res 75(21):4161–4169CrossRefGoogle Scholar
  78. Pietroni I, Argentini S, Petenko I, Sozzi R (2012) Measurements and parametrizations of the atmospheric boundary-layer height at Dome C, Antarctica. Boundary-Layer Meteorol 143:189–206. doi: 10.1007/s10546-011-9675-4 CrossRefGoogle Scholar
  79. Ricaud P, Genthon C, Durand P, Attié J, Carminati F, Canut G, Vanacker J, Moggio L, Courcoux Y, Pellegrini A, Rose T (2012) Summer to winter diurnal variabilities of temperature and water vapour in the lowermost troposphere as observed by HAMSTRAD over Dome C, Antarctica. Boundary-Layer Meteorol 143:227–259CrossRefGoogle Scholar
  80. Rysman JF, Lahellec A, Vignon E, Genthon C, Verrier S (2016) Characterisation of atmospheric Ekman spirals at Dome C, Antarctica. Boundary-Layer Meteorol. doi: 10.1007/s10546-016-0144-y
  81. Sicart J, Litt M, Helgason W, Tahar VB, Chaperon T (2014) A study of the atmospheric surface layer and roughness lengths on the high-altitude tropical Zongo Glacier, Bolivia. J Geophys Res Atmos 119:3793–3808. doi: 10.1002/2013JD020615 CrossRefGoogle Scholar
  82. Smeets C, van den Broeke MR (2008) The parametrisation of scalar transfer over rough ice. Boundary-Layer Meteorol 128:339–388. doi: 10.1007/s10546-008-9292-z CrossRefGoogle Scholar
  83. Stearns CR, Weidner G (1993) Sensible and latent heat flux estimates in antarctica. In: Bromwich DH, Stearns CR (eds) Antarctic meteorology and climatology: studies based on automated weather stations. Antarctic Research Series. AGU, Washington DC, pp 109–138Google Scholar
  84. Steeneveld GJ, Wokke MJJ, Groot Zwaaftink CD, Pijlman S, Heusinkveld BG, Jacobs AFG, Holtslag AAM (2010) Observations of the radiation diveregence in the surface layer and its implication for its parametrization in numerical weather prediction models. J Geophys Res 115:D06107. doi: 10.1029/2009JD013074 CrossRefGoogle Scholar
  85. Stull RB (1990) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 666 ppGoogle Scholar
  86. Town MS, Walden VP (2009) Surface energy budget over the south pole and turbulent heat fluxes as a function of an empirical bulk Richardson number. J Geophys Res 114:D22107. doi: 10.1029/2009JD011888 CrossRefGoogle Scholar
  87. Van As D, Van den Brooke MR, Helsen MM (2006) Structure and dynamics of the summertime atmospheric boundary layer over the Antarctic plateau: 1. Measurements and model validation. J Geophys Res 11:D07102. doi: 10.1029/2005JD005948 Google Scholar
  88. van de Wiel BJH, Moene WH, Hartogensis OK, De Bruin HAR, Holtslag AAM (2003) Intermittent turbulence in the stable boundary layer over land. Part III: a classification for observations during CASES-99. J Atmos Sci 28:2509–2522CrossRefGoogle Scholar
  89. van de Wiel BJH, Moene AF, Jonker HJJ, Baas P, Basu S, Donda JMM, Sun J, Holtslag AMM (2012) The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J Atmos Sci 69:3097–3115. doi: 10.1175/JAS-D-12-064.1 CrossRefGoogle Scholar
  90. Van den Broeke M, Van As D, Reijmer C, van de Wal R (2004) Assessing and improving the quality of unattended radiation observations in Antarctica. J Atmos Ocean Technol 21(9):1417–1431CrossRefGoogle Scholar
  91. Van den Broeke M, Van As D, Reijmer C, Van de Wal R (2005) Sensible heat exchange at the Antarctic snow surface: a study with automatic weather stations. Int J Climatol 25(8):1081–1101CrossRefGoogle Scholar
  92. Zilitinkevich S (2002) Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer. Q J R Meteorol Soc 128:913–925CrossRefGoogle Scholar
  93. Zilitinkevich S, Calanca P (2000) An extended similarity theory for the stably stratified atmospheric surface layer. Q J R Meteorol Soc 126:1913–1923CrossRefGoogle Scholar
  94. Zilitinkevich S, Elperin T, Kleeorin N, L’vov V, Rogachevskii I (2007) Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: the role of internal gravity waves. Boundary-Layer Meteorol 133:139–164. doi: 10.1007/s10546-009-9424-0 CrossRefGoogle Scholar
  95. Zilitinkevich S, Elperin T, Kleeorin N, Rogachevskii I, Esau I, Mauritsen T, Miles MW (2008a) Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes. Q J R Meteorol Soc 134:793–799. doi: 10.1002/qj.264 CrossRefGoogle Scholar
  96. Zilitinkevich S, Mammarella I, Baklanov AA, Joffre SM (2008b) The effect of stratification on the aerodynamic roughness length and displacement height. Boundary-Layer Meteorol 129:179–190. doi: 10.1007/s10546-008-9307-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Laboratoire de Glaciologie et Géophysique de l’EnvironnementCNRS/Université Grenoble AlpesGrenobleFrance
  2. 2.Laboratoire d’étude des Transferts en Hydrologie et EnvironnementCNRS/Université Grenoble AlpesGrenobleFrance
  3. 3.Institute of Atmospheric Sciences and ClimateCNRRomeItaly

Personalised recommendations