Boundary-Layer Meteorology

, Volume 162, Issue 1, pp 143–169 | Cite as

Do Shallow Cumulus Clouds have the Potential to Trigger Secondary Circulations Via Shading?

  • Tobias Gronemeier
  • Farah Kanani-Sühring
  • Siegfried Raasch
Research Article


The effects on the convective boundary layer (CBL) of shading due to shallow cumulus clouds are investigated. The main question is to see whether clouds are able to produce secondary circulations by shading of the surface (dynamic heterogeneities) and how these dynamic heterogeneities interact with static heterogeneities in terms of the production of secondary circulations. Also the effects of cloud shadows on cloud-field characteristics are analyzed. The effects are studied using large-eddy simulations of a cloud-topped CBL with an idealized surface. Over a homogeneous surface, shadows trigger secondary circulations with different strengths depending on the solar zenith angle \(\vartheta \), with large \(\vartheta \) favouring the development of secondary circulations. Over a static heterogeneous surface with a simple striped pattern, the strength of secondary circulations is effectively reduced by dynamic heterogeneities at small \(\vartheta \). At large \(\vartheta \), however, the effect on secondary circulations depends on the orientation of the striped static heterogeneities to the shadow-casting direction of the clouds. The influence of shadows is only small if they are cast perpendicular to the striped heterogeneity, but if stripes and the shadow-casting direction are parallel, secondary circulations are reduced in strength also for large \(\vartheta \). Shadow effects on the cloud-field characteristics vary with \(\vartheta \) as well. The results show that small \(\vartheta \) favours the development of small clouds with a reduced lifetime while large \(\vartheta \) promotes the development of larger clouds with an extended lifetime compared to non-shading clouds.


Cloud shadows Cloud-topped boundary layer Large-eddy simulation Secondary circulation Surface heterogeneity 



All simulations were performed on the SGI Altix ICE at the North-German Supercomputing Alliance (HLRN), Hanover/Berlin. NCL (The NCAR Command Language (Version 6.1.2) [Software]. (2013). Boulder, Colorado: UCAR/NCAR/CISL/VETS. was used for data analysis and visualization. We thank the two anonymous reviewers for their constructive and valuable comments that helped to improve the manuscript.


  1. Avissar R, Schmidt T (1998) An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J Atmos Sci 55:2666–2689CrossRefGoogle Scholar
  2. Brown AR, Cederwall RT, Chlond A, Duynkerke PG, Golaz JC, Khairoutdinov M, Lewellen CD, Lock AP, Macvean M, Moeng CH, Neggers RAJ, Siebesma AP, Stevens B (2002) Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q J R Meteorol Soc 128:1075–1093CrossRefGoogle Scholar
  3. Couvreux F, Hourdin F, Rio C (2010) Resolved versus parametrized boundary-layer plumes. Part I: A parametrization-oriented conditional sampling in large-eddy simulations. Boundary Layer Meteorol 134:441–458. doi: 10.1007/s10546-009-0456-5 CrossRefGoogle Scholar
  4. Cuijpers JWM, Duynkerke PM (1993) Large eddy simulation of trade wind cumulus clouds. J Atmos Sci 50:3894–3908CrossRefGoogle Scholar
  5. Dawe JT, Austin PH (2012) Statistical analysis of an les shallow cumulus cloud ensemble using a cloud tracking algorithm. Atmos Chem Phys 12:1101–1119. doi: 10.5194/acp-12-1101-2012 CrossRefGoogle Scholar
  6. Gryschka M, Witha B, Etling D (2008) Scale analysis of convective clouds. Meteorol Z 17:785–791. doi: 10.1127/0941-2948/2008/0345 CrossRefGoogle Scholar
  7. Hadfield MG, Cotton WR, Pielke RA (1991) Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part I: a small-scale circulation with zero wind. Boundary Layer Meteorol 57:79–114CrossRefGoogle Scholar
  8. Heus T, Seifert A (2013) Automated tracking of shallow cumulus clouds in large domain, long duration large eddy simulations. Geosci Model Dev 6:1261–1273. doi: 10.5194/gmd-6-1261-2013 CrossRefGoogle Scholar
  9. Hill TA, Choularton TW (1985) An airborne study of the mircophysical structure of cumulus clouds. Q J R Meteorol Soc 111:517–544. doi: 10.5194/gmdd-6-2287-2013 CrossRefGoogle Scholar
  10. Horn GL, Ouwersloot HG, Vilà-Guerau de Arellano J, Sikma M (2015) Cloud shading effects in characteristic boundary-layer length scales. Boundary-Layer Meteorol. doi: 10.1007/s10546-015-0054-4
  11. Hu YX, Stamnes K (1993) An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J Clim 6:728–741CrossRefGoogle Scholar
  12. Kasten F, Czeplak G (1980) Solar and terrestrial radiation dependent on the amount and type of cloud. Solar Energy 24:177–189CrossRefGoogle Scholar
  13. Letzel MO, Raasch S (2003) Large eddy simulation of thermally induced oscillations in the convective boundary layer. J Atmos Sci 60:2328–2341CrossRefGoogle Scholar
  14. Lohou F, Patton EG (2014) Surface energy balance and buoyancy response to shallow cumulus shading. J Atmos Sci 71:665–682. doi: 10.1175/JAS-D-13-0145.1 CrossRefGoogle Scholar
  15. Maronga B, Raasch S (2013) Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the litfass-2003 experiment. Boundary Layer Meteorol 146:17–44. doi: 10.1007/s10546-012-9748-z CrossRefGoogle Scholar
  16. Maronga B, Gryschka M, Heinze R, Hoffmann F, Kanani-Sühring F, Keck M, Ketelsen K, Letzel MO, Sühring M, Raasch S (2015) The parallelized large-eddy simulation model (palm) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives. Geosci Model Dev 8(8):2515–2551. doi: 10.5194/gmd-8-2515-2015,
  17. Martin GM, Johnson DW, Spice A (1994) The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J Atmos Sci 51:1823–1842CrossRefGoogle Scholar
  18. Neggers RAJ, Jonker HJJ, Siebesma AP (2003) Size statistics of cumulus cloud populations in large-eddy simulations. J Atmos Sci 60:1060–1074CrossRefGoogle Scholar
  19. Ouwersloot H, Vilà-Guerau de Arellano J, van Heerwaarden C, Ganzeveld L, Krol M, Lelieveld L (2011) Layer segregation of chemical species in a clear boundary layer over heterogeneous land surfaces. Atmos Chem Phys 11:10,681–10,704CrossRefGoogle Scholar
  20. Patton EG, Sullivan PP, Moeng CH (2005) The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmos Sci 62:2078–2097CrossRefGoogle Scholar
  21. Raasch S, Franke T (2011) Structure and formation of dust devil-like vortices in the atmospheric boundary layer: a high-resolution numerical study. J Geophys Res 116:D16120. doi: 10.1029/2011JD016010 CrossRefGoogle Scholar
  22. Raasch S, Harbusch G (2001) An analysis of secondary circulations and their effect caused by small-scale surface inhomogeneities using large-eddy simulation. Boundary-Layer Meteorol 101:31–59CrossRefGoogle Scholar
  23. Raasch S, Schröter M (2001) Palm—a large-eddy simulation model performing on massively parallel computers. Meteorol Z 10:363–372CrossRefGoogle Scholar
  24. Schumann U, Dörnbrack A, Mayer B (2002) Cloud-shadow effects on the structure of the convective boundary layer. Meteorol Z 11:285–294CrossRefGoogle Scholar
  25. Shen S, Leclerc MY (1995) How large must surface inhomogeneities be before they influence the convective boundary layer structure? A case study. Q J R Meteorol Soc 121:1209–1228CrossRefGoogle Scholar
  26. Sühring M, Maronga B, Herbort F, Raasch S (2014) On the effect of surface heat-flux heterogeneities on the mixed-layer top entrainment. Boundary-Layer Meteorol 151:531–556CrossRefGoogle Scholar
  27. Wapler K (2007) Der einfluss des dreidimensionalen strahlungstransportes auf wolkenbildung und -entwicklung. PhD thesis, Ludwig-Maximilians-Universität München, MunichGoogle Scholar
  28. Wapler K, Mayer B (2008) A fast three-dimensional approximation for the calculation of surface irradiance in large-eddy simulation models. J Appl Meteor Climatol 47:3061–3071. doi: 10.1175/2008JAMC1842.1 CrossRefGoogle Scholar
  29. Wicker LJ, Skamarock WC (2002) Time-splitting methods for elastic models using forward time schemes. Mon Wea Rev 130:2088–2097CrossRefGoogle Scholar
  30. Williamson JH (1980) Low-storage Runge-Kutta schemes. J Comput Phys 35:48–56CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institut für Meteorologie und KlimatologieLeibniz Universität HannoverHannoverGermany

Personalised recommendations