Boundary-Layer Meteorology

, Volume 161, Issue 3, pp 417–437 | Cite as

Modelling Canopy Flows over Complex Terrain

  • Eleanor R. Grant
  • Andrew N. Ross
  • Barry A. Gardiner
Research Article


Recent studies of flow over forested hills have been motivated by a number of important applications including understanding CO\(_2\) and other gaseous fluxes over forests in complex terrain, predicting wind damage to trees, and modelling wind energy potential at forested sites. Current modelling studies have focussed almost exclusively on highly idealized, and usually fully forested, hills. Here, we present model results for a site on the Isle of Arran, Scotland with complex terrain and heterogeneous forest canopy. The model uses an explicit representation of the canopy and a 1.5-order turbulence closure for flow within and above the canopy. The validity of the closure scheme is assessed using turbulence data from a field experiment before comparing predictions of the full model with field observations. For near-neutral stability, the results compare well with the observations, showing that such a relatively simple canopy model can accurately reproduce the flow patterns observed over complex terrain and realistic, variable forest cover, while at the same time remaining computationally feasible for real case studies. The model allows closer examination of the flow separation observed over complex forested terrain. Comparisons with model simulations using a roughness length parametrization show significant differences, particularly with respect to flow separation, highlighting the need to explicitly model the forest canopy if detailed predictions of near-surface flow around forests are required.


Complex terrain First-order mixing-length closure Flow separation Forest canopy Numerical modelling 



This work was funded by Natural Environment Research Council (NERC) grant NE/C003691/1. E.R.G. would like to acknowledge additional support through a NERC Collaborative Award in Science and Engineering (CASE) with Forest Research.


  1. Banerjee T, Katul G, Fontan S, Poggi D, Kumar M (2013) Mean flow near edges and within cavities situated inside dense cavities. Boundary-Layer Meteorol 149:19–41. doi: 10.1007/s10546-013-9826-x CrossRefGoogle Scholar
  2. Belcher SE, Harman IN, Finnigan JJ (2012) The wind in the willows: Flows in forest canopies in complex terrain. Annu Rev Fluid Mech 44:479–504. doi: 10.1146/annurev-fluid-120710-101036 CrossRefGoogle Scholar
  3. Boudreault LE, Bechmann A, Tarvainen L, Klemedtsson L, Shendryk I, Dellwik E (2015) A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests. Agric For Meteorol 201:86–97. doi: 10.1016/j.agrformet.2014.10.014 CrossRefGoogle Scholar
  4. Brown AR, Hobson JM, Wood N (2001) Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Boundary-Layer Meteorol 98:411–441. doi: 10.1023/A:1018703209408 CrossRefGoogle Scholar
  5. Burns SP, Sun J, Lenschow DH, Oncley SP, Stephens BB, Yi C, Anderson DE, Hu J, Monson RK (2011) Atmospheric stability effects on wind fields and scalar mixing within and just above a subalpine forest in sloping terrain. Boundary-Layer Meteorol 138:231–262. doi: 10.1007/s10546-010-9560-6 CrossRefGoogle Scholar
  6. Desmond CJ, Watson SJ, Aubrun S, Avila S, Hancock P, Sayer A (2014) A study on the inclusion of forest canopy morphology data in numerical simulations for the purpose of wind resource assessment. J Wind Eng Ind Aerodyn 126:24–37. doi: 10.1016/j.jweia.2013.12.011 CrossRefGoogle Scholar
  7. Dupont S, Brunet Y (2008) Edge flow and canopy structure: a large-eddy simulation study. Boundary-Layer Meteorol 126:51–71. doi: 10.1007/s10546-007-9216-3 CrossRefGoogle Scholar
  8. Dupont S, Brunet Y (2009) Coherent structures in canopy edge flow: a large-eddy simulation study. J Fluid Mech 630:93–128. doi: 10.1017/S0022112009006739 CrossRefGoogle Scholar
  9. Dupont S, Brunet Y, Finnigan JJ (2008) Large-eddy simulation of turbulent flow over a forested hill: validation and coherent structure identification. Q J R Meteorol Soc 134:1911–1929. doi: 10.1002/qj.328 CrossRefGoogle Scholar
  10. Dupont S, Bonnefond JM, Irvine MR, Lamaud E, Brunet Y (2011) Long-distanec edge effects in a pine forest with a deep and sparse trunk space: in situ and numerical experiments. Agric For Meteorol 151:328–344. doi: 10.1016/j.agrformet.2010.11.007 CrossRefGoogle Scholar
  11. EDINA (2011) Digimap Ordnance Survey service. Accessed 13 June 2016
  12. Finnigan JJ, Belcher SE (2004) Flow over a hill covered with a plant canopy. Q J R Meteorol Soc 130:1–29. doi: 10.1256/qj.02.177 CrossRefGoogle Scholar
  13. Finnigan JJ, Harman IN, Ross AN, Belcher SE (2015) First order turbulence closure for modelling complex canopy flows. Q J R Meteorol Soc 141:2907–2916. doi: 10.1002/qj.2577 CrossRefGoogle Scholar
  14. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105. doi: 10.1016/0168-1923(95)02248-1 CrossRefGoogle Scholar
  15. Grant ER, Ross AN, Gardiner BA, Mobbs SD (2015) Field observations of canopy flow over complex terrain. Boundary-Layer Meteorol 156:231–251. doi: 10.1007/s10546-015-0015-y CrossRefGoogle Scholar
  16. Hunt JCR, Abell CJ, Peterka JA, Woo H (1978) Kinematical studies of flow around free or surface mounted obstacles; applying topology to flow visualisation. J Fluid Mech 86:179–200. doi: 10.1017/S0022112078001068 CrossRefGoogle Scholar
  17. Katul GG, Mahrt L, Poggi D, Sanz C (2004) One- and two-equation models for canopy turbulence. Boundary-Layer Meteorol 113:81–109. doi: 10.1023/B:BOUN.0000037333.48760.e5 CrossRefGoogle Scholar
  18. Katul GG, Finnigan JJ, Poggi D, Leuning R, Belcher SE (2006) The influence of hilly terrain on canopy-atmosphere carbon dioxide exchange. Boundary-Layer Meteorol 118:189–216. doi: 10.1007/s10546-005-6436-2 CrossRefGoogle Scholar
  19. Liu J, Chen JM, Black TA, Novak MD (1996) \(e\)\( \epsilon \) modelling of turbulent air flow downwind of a model forest edge. Boundary-Layer Meteorol 77:21–44. doi: 10.1007/BF00121857 CrossRefGoogle Scholar
  20. Oldroyd HJ, Pardyjak ER, Huwald H, Parlange MB (2015) Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain. Boundary-Layer Meteorol. doi: 10.1007/s10546-015-0066-0
  21. Patton EG, Katul GG (2009) Turbulent pressure and velocity perturbations induced by gentle hills covered with sparse and dense canopies. Boundary-Layer Meteorol 133:189–217. doi: 10.1007/s10546-009-9427-x CrossRefGoogle Scholar
  22. Pinard JDJP, Wilson JD (2001) First- and second-order closure models for wind in a plant canopy. J Appl Meteorol 40(10):1762–1768. doi: 10.1175/1520-0450(2001)040<1762:FASOCM>2.0.CO;2
  23. Poggi D, Katul GG (2007) Turbulent flows on forested hilly terrain: the recirculation region. Q J R Meteorol Soc 133:1027–1039. doi: 10.1002/qj.73 CrossRefGoogle Scholar
  24. Ross AN (2008) Large eddy simulations of flow over forested ridges. Boundary-Layer Meteorol 128:59–76. doi: 10.1007/s10546-008-9278-x CrossRefGoogle Scholar
  25. Ross AN (2011) Scalar transport over forested hills. Boundary-Layer Meteorol 141:179–199. doi: 10.1007/s10546-011-9628-y CrossRefGoogle Scholar
  26. Ross AN (2012) Boundary-layer flow within and above a forest canopy of variable density. Q J R Meteorol Soc 138:1259–1272. doi: 10.1002/qj.989 CrossRefGoogle Scholar
  27. Ross AN, Baker TP (2013) Flow over partially forested ridges. Boundary-Layer Meteorol 146:375–392. doi: 10.1007/s10546-012-9766-x CrossRefGoogle Scholar
  28. Ross AN, Grant ER (2015) A new continuous planar fit method for calculating fluxes in complex, forested terrain. Atmos Sci Lett 16:445–452. doi: 10.1002/asl.580 CrossRefGoogle Scholar
  29. Ross AN, Harman IN (2015) The impact of source distribution on scalar transport over forested hills. Boundary-Layer Meteorol 156:211–230. doi: 10.1007/s10546-015-0029-5 CrossRefGoogle Scholar
  30. Ross AN, Vosper SB (2005) Neutral turbulent flow over forested hills. Q J R Meteorol Soc 131:1841–1862. doi: 10.1256/qj.04.129 CrossRefGoogle Scholar
  31. Ross AN, Arnold S, Vosper SB, Mobbs SD, Dixon N, Robins AG (2004) A comparison of wind tunnel experiments and numerical simulations of neutral and stratified flow over a hill. Boundary-Layer Meteorol 113(3):427–459. doi: 10.1007/s10546-004-0490-z CrossRefGoogle Scholar
  32. Schlegel F, Stiller J, Bienert A, Maas HG, Queck R, Bernhofer C (2015) Large-eddy simulation study of the effects on flow of a heterogeneous forest at sub-tree resolution. Boundary-Layer Meteorol 154:27–56. doi: 10.1007/s10546-014-9962-y CrossRefGoogle Scholar
  33. Wilson JD, Finnigan JJ, Raupach MR (1998) A first-order closure for disturbed plant-canopy flows, and its application to winds in a canopy on a ridge. Q J R Meteorol Soc 124:705–732. doi: 10.1002/qj.49712454704 Google Scholar
  34. Wood N (1995) The onset of separation in neutral, turbulent flow over hills. Boundary-Layer Meteorol 76:137–164. doi: 10.1007/BF00710894 CrossRefGoogle Scholar
  35. Wood N, Mason PJ (1993) The pressure force induced by neutral, turbulent flow over hills. Q J R Meteorol Soc 119:1233–1267. doi: 10.1002/qj.49711951402 CrossRefGoogle Scholar
  36. Yang B, Raupach MR, Shaw RH, Tha K, Paw UKT, Morse AP (2006) Large-eddy simulation of turbulent flow across a forest edge. Part 1: flow statistics. Boundary-Layer Meteorol 120(3):377–412. doi: 10.1007/s10546-006-9057-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute for Climate and Atmospheric Science, School of Earth and EnvironmentUniversity of LeedsLeedsUK
  2. 2.British Antarctic SurveyCambridgeUK
  3. 3.Forest ResearchMidlothianScotland
  4. 4.INRA, UMR 1391 ISPA, 33140 Villenave D’Ornon and Bordeaux Sciences Agro, UMR 1391 ISPAGradignanFrance

Personalised recommendations