Boundary-Layer Meteorology

, Volume 160, Issue 2, pp 363–373 | Cite as

Characterization of Atmospheric Ekman Spirals at Dome C, Antarctica

  • Jean-François Rysman
  • Alain Lahellec
  • Etienne Vignon
  • Christophe Genthon
  • Sébastien Verrier
Notes and Comments


We use wind speed and temperature measurements taken along a 45-m meteorological tower located at Dome C, Antarctica (\(75.06^{\circ }\hbox {S}\), \(123.19^{\circ }\hbox {E}\)) to highlight and characterize the Ekman spiral. Firstly, temperature records reveal that the atmospheric boundary layer at Dome C is stable during winter and summer nights (i.e., \(>\)85 % of the time). The wind vector, in both speed and direction, also shows a strong dependence with elevation. An Ekman model was then fitted to the measurements. Results show that the wind vector follows the Ekman spiral structure for more than 20 % of the year (2009). Most Ekman spirals have been detected during summer nights, that is, when the boundary layer is slightly stratified. During these episodes, the boundary-layer height ranged from 25 to 100 m, the eddy viscosity from 0.004 to \(0.06~\hbox {m}^2~\hbox {s}^{-1}\), and the Richardson number from zero to 1.6.


Atmospheric boundary layer Dome C Ekman spiral  Meteorological tower 



We would like to thank Jean-Yves Grandpeix for his valuable help for the statistical analysis and Chantal Claud for her support that allows to achieve this paper. Boundary layer observation and research at Dome C were supported by the French Polar Institute (IPEV; CALVA program), the Institut National des Sciences de l’Univers (Concordia and LEFE-CLAPA programs), the Observatoire des Sciences de l’Univers de Grenoble (OSUG) and the École Doctorale 129 - Sciences de l’environnement. We would like to thank the two anonymous referees for their helpful comments and suggestions.


  1. Argentini S, Viola A, Sempreviva AM, Petenko I (2005) Summer boundary-layer height at the plateau site of Dome C, Antarctica. Boundary-Layer Meteorol 115:409–422. doi: 10.1007/s10546-004-5643-6 CrossRefGoogle Scholar
  2. Aristidi E, Agabi K, Azouit M, Fossat E, Vernin J, Travouillon T, Lawrence JS, Meyer C, Storey JWV, Halter B, Roth WL, Walden V (2005) An analysis of temperatures and wind speeds above Dome C, Antarctica. Astron Astrophys 430:739–746. doi: 10.1051/0004-6361:20041876 CrossRefGoogle Scholar
  3. Barral H, Vignon E, Bazile E, Traullé O, Gallée H, Genthon C, Brun C, Couvreux F, Le Moigne P (2014) Summer diurnal cycle at Dome C on the Antartic Plateau. In: 21st symposium on boundary layer and turbulenceGoogle Scholar
  4. Casasanta G, Pietroni I, Petenko I, Argentini S (2014) Observed and modelled convective mixing-layer height at Dome C, Antarctica. Bounday-Layer Meteorol 151:587–608. doi: 10.1007/s10546-014-9907-5 Google Scholar
  5. Connolley WM (1996) The Antarctic temperature inversion. Int J Climatol 16:1333–1342CrossRefGoogle Scholar
  6. Ekman VW (1905) On the influence of the Earth’s rotation on ocean currents. Ark Mat Astron Fys 2:1–53Google Scholar
  7. Gallée H, Barral H, Vignon E, Genthon C (2015) A case study of a low level jet during OPALE. Atmos Chem Phys Discuss 14:31,091–31,109. doi: 10.5194/acp-15-1-2015 CrossRefGoogle Scholar
  8. Gallée H, Preunkert S, Argentini S, Frey MM, Genthon C, Jourdain B, Pietroni I, Casasanta G, Barral H, Vignon E, Legrand M, Amory C (2015) Characterization of the boundary layer at Dome C (East Antarctica) during the OPALE summer campaign. Atmos Chem Phys 15:6225–6236. doi: 10.5194/acp-15-6225-2015 CrossRefGoogle Scholar
  9. Genthon C, Town MS, Six D, Favier V, Argentini S, Pellegrini A (2010) Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica. J Geophys Res Atmos 115:D05104. doi: 10.1029/2009JD012741 CrossRefGoogle Scholar
  10. Genthon C, Gallée H, Six D, Grigioni P, Pellegrini A (2013) Two years of atmospheric boundary layer observation on a 45-m tower at Dome C on the Antarctic plateau. J Geophys Res Atmos 118:3218–3232. doi: 10.1002/jgrd.50128 CrossRefGoogle Scholar
  11. Georgiadis T, Argentini S, Mastrantonio G, Sozzi AVR, Nardino M (2002) Boundary layer convective-like activity at Dome Concordia, Antarctica. Nuovo Cim C Geophys Sp Phys C 25:425Google Scholar
  12. Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the Sheba data. Boundary-Layer Meteorol 116:201–235. doi: 10.1007/s10546-004-2729-0 CrossRefGoogle Scholar
  13. Hagelin S, Masciadri E, Lascaux F, Stoesz J (2008) Comparison of the atmosphere above the South Pole, Dome C and Dome A: first attempt. Mon Not R Astron Soc 1510:1499–1510. doi: 10.1111/j.1365-2966.2008.13361.x CrossRefGoogle Scholar
  14. Holton J (1992) An introduction to dynamic meteorology. Academic Press, San Diego, 511 ppGoogle Scholar
  15. Holtslag AAM, Svensson G, Baas P, Basu S, Beare B, Beljaars ACM, Bosveld FC, Cuxart J, Lindvall J, Steeneveld GJ, Tjernström M, Van de Wiel BJH (2013) Stable boundary layers and diurnal cycles. Bull Am Meteorol Soc 94:1691–1706CrossRefGoogle Scholar
  16. Hudson SR, Brandt RE (2005) A look at the surface-based temperature inversion on the Antarctic Plateau. J Clim 18:1673–1696. doi: 10.1175/JCLI3360.1 CrossRefGoogle Scholar
  17. King JC, Turner J (1997) Antarctic meteorology and climatology. Cambridge University Press, Cambridge 409 ppCrossRefGoogle Scholar
  18. King JC, Argentini SA, Anderson PS (2006) Contrasts between the summertime surface energy balance and boundary layer structure at Dome C and Halley stations, Antarctica. J Geophys Res Atmos 111:D02105. doi: 10.1029/2005JD006130 CrossRefGoogle Scholar
  19. Kottmeier C (1986) Shallow gravity flows over the Ekstrm ice shelf. Boundary-Layer Meteorol 35(1–2):1–20CrossRefGoogle Scholar
  20. Kuhn M, Lettau H, Riordan AJ (1977) Stability wind spiraling in the lowest 32 m. In: Meteorological studies at Plateau Station, Antarctica. Paper 7, Antarctic Research Series, vol 25, pp 93–l I IGoogle Scholar
  21. Lettau H (1950) A reexamination of the “Leipzig wind profile” considering some relations between wind and turbulence in the frictional layer. Tellus 2(2):125–129CrossRefGoogle Scholar
  22. Lettau H, Riordan A, Kuhn M (1977) Air temperature and two-dimensional wind profiles in the lowest 32 m as a function of bulk stability. In: Businger JA (ed) Meteorological studies at Plateau station, Antarctica. Antarctic Research Series, vol 25, American Geophysical Union, Washington, pp 77–91Google Scholar
  23. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Quart Appl Math 2:164–168Google Scholar
  24. Mahrt L, Schwerdtfeger W (1970) Ekman spirals for exponential thermal wind. Boundary-Layer Meteorol 1(2):137–145CrossRefGoogle Scholar
  25. Mastrantonio G, Malvestuto V, Argentini S, Georgiadis T, Viola A (1999) Evidence of a convective boundary layer developing on the Antarctic plateau during the summer. Meteorol Atmos Phys 71:127–132. doi: 10.1007/s007030050050 CrossRefGoogle Scholar
  26. Mildner P (1932) Über die Reibung in einer speziellen Luftmasse in den untersten Schichten der Atmosphäre. Beitr Phys freien Atmosphäre 19:151–158Google Scholar
  27. Pietroni I, Argentini S, Petenko I, Sozzi R (2012) Measurements and parametrizations of the atmospheric boundary-layer height at Dome C, Antarctica. Boundary-Layer Meteorol 143:189–206. doi: 10.1007/s10546-011-9675-4 CrossRefGoogle Scholar
  28. Rysman JF, Verrier S, Lahellec A, Genthon C (2015) Analysis of boundary-layer statistical properties at Dome C, Antarctica. Boundary-Layer Meteorol 156:1–11CrossRefGoogle Scholar
  29. Sandu I, Beljaars A, Balsamo G (2014) Improving the representation of stable boundary layers. ECMWF Newsl 138:24–31Google Scholar
  30. Van Ulden A, Wieringa J (1996) Atmospheric boundary layer research at Cabauw. Boundary-Layer Meteorol 78:34–69Google Scholar
  31. Zilitinkevich SS (2002) Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer. Q J R Meteorol Soc 128(581):913–925CrossRefGoogle Scholar
  32. Zilitinkevich S, Esau I, Baklanov A (2007) Further comments on the equilibrium height of neutral and stable planetary boundary layers. Q J R Meteorol Soc 133:265–271CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jean-François Rysman
    • 1
  • Alain Lahellec
    • 2
  • Etienne Vignon
    • 3
  • Christophe Genthon
    • 3
  • Sébastien Verrier
    • 4
  1. 1.Laboratoire de Météorologie DynamiqueIPSL, CNRS, Ecole PolytechniquePalaiseauFrance
  2. 2.Laboratoire de Météorologie DynamiqueIPSL, CNRS, UPMC Univ. Paris 06ParisFrance
  3. 3.Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE)Université Grenoble Alpes / CNRSGrenobleFrance
  4. 4.LOCEAN (UPMC/IPSL), CNESParisFrance

Personalised recommendations