Boundary-Layer Meteorology

, Volume 160, Issue 1, pp 133–156 | Cite as

Sampling the Structure of Convective Turbulence and Implications for Grey-Zone Parametrizations

  • Rachel Honnert
  • Fleur Couvreux
  • Valéry Masson
  • Dávid Lancz
Original Article


The grey zone of dry convection is the range of scales in which boundary-layer thermals are partly explicitly resolved by numerical weather prediction (NWP) models and partly parametrized. We seek to determine how thermals are divided into subgrid and resolved scales in the grey zone of convective boundary-layer thermals. Reference data for grid-scale and subgrid-scale fields at these resolutions are constructed by filtering 62.5-m large-eddy simulation data. A conditional sampling is adapted to detect subgrid thermals, and is used to characterize the subgrid thermals at several grid spacings in the grey zone. A mass-flux parametrization used in NWP models is compared with the subgrid thermal field. The analysis demonstrates that, although the mass-flux framework is suitable in the grey zone, some assumptions of the mass-flux schemes, usually used at the mesoscale, cannot be made in the grey zone. In particular, the thermal fraction is not small, the resolved vertical velocity is not negligible, the entrainment and detrainment rates depend on the horizontal resolution, the triggering and the closure at the surface are moreover random.


Convective boundary layer Grey zone Large-eddy simulation Mass-flux scheme 


  1. Arakawa A, Jung J-H, Wu C-M (2011) Toward unification of the multiscale modeling of the atmosphere. Atmos Chem Phys 11:3731–3742CrossRefGoogle Scholar
  2. Arakawa A, Wu C-M (2013) A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J Atmos Sci 70:1977–1992CrossRefGoogle Scholar
  3. Brown AR, Cederwall RT, Chlond A, Duynkerke PG, Golaz J-C, Khairoutdinov M, Lewellen DC, Lock AP, Macvean MK, Moeng C-H, Neggers RAJ, Siebesma AP, Stevens B (2002) Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q J R Meteorol Soc 128:1075–1093CrossRefGoogle Scholar
  4. Canut G, Couvreux F, Lothon M, Pino D, Said F (2012) Observations and large-eddy simulations of entrainment in the sheared sahelian boundary layer. Boundary-Layer Meteorol 142:79–101CrossRefGoogle Scholar
  5. Cheng A, Xu K-M, Stevens B (2009) Effects of Resolution on the simulation of boundary-layer clouds and the partition of kinetic energy to subgrid scales. J Adv Model Earth Syst 2:21. doi: 10.3894/JAMES.2010.2.3
  6. Clarke RH, Dyer AJ, Reid DG, Troup AJ (1971) The Wangara experiment: Boundary layer data. Division Meteorological Physics Paper, CSIRO 19: AustraliaGoogle Scholar
  7. Couvreux F, Guichard F, Redelsperger J-L, Kiemle C, Masson V, Lafore J-P, Flamant C (2005) Water vapour variability within a convective boundary-layer assessed by large-eddy simulations and IHOP 2002 observations. Q J R Meteorol Soc 131:2665–2693CrossRefGoogle Scholar
  8. Couvreux F, Hourdin F, Rio C (2010) Resolved versus parametrized boundary-layer plumes. Part I: A parametrization-oriented conditional sampling in large-eddy simulations. Boundary-Layer Meteorol 134:441–458CrossRefGoogle Scholar
  9. Craig GC, Cohen BG (2006) Fluctuations in an equilibrium convective ensemble. Part I: Theoretical formulation. J Atmos Sci 63:1996–2004CrossRefGoogle Scholar
  10. Cuxart J, Bougeault P, Redelsperger J-L (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126:1–30CrossRefGoogle Scholar
  11. De Roode SR, Duynkerke PG, Jonker HJJ (2004) Large-eddy simulation: how large is large enough? J Atmos Sci 61:403–421CrossRefGoogle Scholar
  12. Deardorff JW (1972) Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29:91–115CrossRefGoogle Scholar
  13. Dorrestijn J, Crommelin DT, Siebesma AP, Jonker HJJ (2013) Stochastic convection parametrization estimated from high-resolution model data. Theor Comput Fluid Dyn 27:133–148CrossRefGoogle Scholar
  14. Frech M, Mahrt L (1995) A two-scale mixing formulation for the atmospheric boundary layer. Boundary-Layer Meteorol 73:91–104CrossRefGoogle Scholar
  15. Honnert R, Masson V, Couvreux F (2011) A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J Atmos Sci 68:3112–3131CrossRefGoogle Scholar
  16. Hourdin F, Couvreux F, Menut L (2002) Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J Atmos Sci 59:1105–1122CrossRefGoogle Scholar
  17. Lafore JP, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Héreil P, Mascart P, Masson V, Pinty JP, Redelsperger JL, Richard E, Vila-Guerau de Arellano J (1998) The Méso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulation. Ann Geophys 16:90–109CrossRefGoogle Scholar
  18. Morton B, Taylor G, Turner J (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc Lond, pp 1–23Google Scholar
  19. Pergaud J, Masson V, Malardel S, Couvreux F (2009) A parametrization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Boundary-Layer Meteorol 132:83–106CrossRefGoogle Scholar
  20. Peter P. Sullivan, Edward G. Patton (2008) A highly parallel algorithm for turbulence simulations in planetary boundary layers: results with meshs up to \(1024^3\). National Center for Atmospheric Research, Boulder, CO. In: 16th Symposium on Boundary Layer and Turbulence, AMSGoogle Scholar
  21. Redelsperger JL, Thorncroft CD, Lebel T, Diedhiou A, Parker DJ, Polcher J (2006) African monsoon multidisciplinary analysis an international research project and field campaign. Bull Am Meteorol Soc 87(12):1735–1746CrossRefGoogle Scholar
  22. Rio C, Hourdin F, Couvreux F, Jam A (2010) Resolved versus parametrized boundary-layer plumes. Part II: Continuous formulations of mixing rates for mass-flux schemes. Boundary-Layer Meteorol 135:469–483CrossRefGoogle Scholar
  23. Rochetin N, Couvreux F, Grandpeix J-Y, Rio C (2014) Deep convection triggering by boundary layer thermals. Part I: LES analysis and stochastic triggering formulation. J Atmos Sci 71:496–514CrossRefGoogle Scholar
  24. Romps D (2011) A direct measure of entrainment. J Atmos Sci 68:2009–2025CrossRefGoogle Scholar
  25. Sakradzija M, Seifert A, Heus T (2015) Fluctuations in a quasi-stationary shallow cumulus cloud ensemble. Nonlinear Process Geophys 22:65–85CrossRefGoogle Scholar
  26. Seity Y, Brousseau P, Malardel S, Hello G, Benard P, Bouttier F, Lac C, Masson V (2010) The AROME-France convective scale operational model. Mon Weather Rev 139:976–991CrossRefGoogle Scholar
  27. Shin H, Hong S (2013) Analysis on resolved and parametrized vertical transports in the convective boundary layers at the gray-zone resolution. J Atmos Sci 70:3248–3261CrossRefGoogle Scholar
  28. Siebesma AP, Bretherton CS, Chlond A, Cuxart J, Duynkerke PG, Jiang H, Khairoutdinov M, Lewellen D, Moeng C-H, Sanchez E, Stevens B, Stevens DE (2003) A large eddy simulation intercomparaison study of shallow cumulus convection. J Atmos Sci 60:1201–1219CrossRefGoogle Scholar
  29. Siebesma P, Soares PMM, Teixeira J (2007) A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J Atmos Sci 64:1230–1248CrossRefGoogle Scholar
  30. Siebesma P, Cuijpers JWM (1995) Evaluation of parametric assumptions for shallow cumulus convection. J Atmos Sci 53:650–666CrossRefGoogle Scholar
  31. Siebesma AP, Holtslag AAM (1996) Model impacts of entrainment and detrainment rates in shallow cumulus convection. J Atmos Sci 53:2354–2364CrossRefGoogle Scholar
  32. Soares PMM, Miranda PMA, Siebesma AP, Teixeira J (2004) An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection. Q J R Meteorol Soc 130:3365–3383CrossRefGoogle Scholar
  33. Stull RB (1984) Transilient turbulence theory. Part I: The concept of eddy-mixing across finite distances. J Atmos Sci 41:3351–3366CrossRefGoogle Scholar
  34. Weckwerth TM, Parsons DB, Koch SE, Moore JA, Lemone MA, Demoz BR, Flamant C, Geerts B, Wang J, Feltz W (2004) An overview of the international H2O project (IHOP 2002) and some preliminary highlights. Bull Am Meteorol Soc 85:253–277CrossRefGoogle Scholar
  35. Wyngaard JC (2004) Toward numerical modelling in the ‘Terra Incognita’. J Atmos Sci 61:1816–1826CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Rachel Honnert
    • 1
  • Fleur Couvreux
    • 1
  • Valéry Masson
    • 1
  • Dávid Lancz
    • 2
  1. 1.CNRM, Météo-FranceToulouse Cedex 01France
  2. 2.Hungarian Meteorological ServiceBudapestHungary

Personalised recommendations