Boundary-Layer Meteorology

, Volume 159, Issue 1, pp 23–40 | Cite as

Particle Dispersion in the Neutral Atmospheric Surface Layer

  • Sergey Belan
  • Vladimir Lebedev
  • Gregory Falkovich
Article

Abstract

We address theoretically the longstanding problem of particle dispersion in the lower atmosphere. The evolution of particle concentration under an absorbing boundary condition at the ground is described. We derive a close-form solution for the downwind surface density of deposited particles and find how the number of airborne particles decreases with time. The problem of the plume formation above the extended surface source is also solved analytically. At the end, we show how turbophoresis modifies the mean settling velocity of particles.

Keywords

Analytical solution Dispersion theory Heavy particles Settling velocity 

References

  1. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions. Dover, New YorkGoogle Scholar
  2. Batchelor GK (1964) Diffusion from sources in a turbulent boundary layer. Arch Mech Stosow 3(6):661–670Google Scholar
  3. Belan S (2016) Concentration of diffusional particles in viscous boundary sublayer of turbulent flow. Physica A Stat Mech Appl 443:128–136CrossRefGoogle Scholar
  4. Belan S, Fouxon S, Falkovich G (2014) Localization-delocalization transitions in turbophoresis of inertial particles. Phys Rev Lett 112:234502CrossRefGoogle Scholar
  5. Brutsaert W (1982) Evaporation into the atmosphere: theory, history, and applications. D. Reidel, Dordrecht, 299 ppGoogle Scholar
  6. Calder K (1961) Atmospheric diffusion of particulate material, considered as a boundary value problem. J Atmos Sci 18:413–415Google Scholar
  7. Chamberlain AC (1967) Transport of Lycopodium spores and other small particles to rough surfaces. Proc R Soc Lond A 296(1444):45–70CrossRefGoogle Scholar
  8. Chamecki M, Meneveau C (2011) Particle boundary layer above and downstream of an area source: scaling, simulations, and pollen transport. J Fluid Mech 683(1):1–26CrossRefGoogle Scholar
  9. Chatwin PC (1968) The dispersion of a puff of passive substance in the constant stress region. Q J R Meteorol Soc 94:401–411CrossRefGoogle Scholar
  10. Corrsin J (1974) Limitations of gradient transport models in random walks and in turbulence. Adv Geophys 18A:25–29Google Scholar
  11. Falkovich G, Gawȩdzki K, Vergassola M (2001) Particles and fiels in fluid turbulence. Rev Mod Phys 73:913CrossRefGoogle Scholar
  12. Frost R (1946) Turbulence and diffusion in the lower atmosphere. Proc R Soc Lond A 186(1004):20–35CrossRefGoogle Scholar
  13. Godson WL (1958) The diffusion of particulate matter from an elevated source. Meteorol Atmos Phys 10(4):305–327Google Scholar
  14. Havlin S, Larralde H, Kopelman R, Weiss GH (1990) Statistical properties of the distance between a trapping center and a uniform density of diffusing particles in two dimensions. Physica A 169(3):337–341CrossRefGoogle Scholar
  15. Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26(4):883–889CrossRefGoogle Scholar
  16. Monin AS (1959) On the boundary condition on the Earth surface for diffusing pollution. Adv Geophys 6:435436Google Scholar
  17. Monin AS, Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence. Dover Books on Physics, New York Chap. 10, 791 ppGoogle Scholar
  18. Okubo A, Levin SA (1989) A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 70(2):329–338CrossRefGoogle Scholar
  19. Pan Y, Chamecki M, Isard SA (2013) Dispersion of heavy particles emitted from area sources in the unstable atmospheric boundary layer. Boundary-Layer Meteorol 146:235–256CrossRefGoogle Scholar
  20. Rounds W (1955) Solutions of the two-dimensional diffusion equations. Trans Am Geophys Union 36:395–405CrossRefGoogle Scholar
  21. Smith RB (2008) A K-theory of dispersion, settling and deposition in the atmospheric surface layer. Boundary-Layer Meteorol 129(3):371–393CrossRefGoogle Scholar
  22. Sutton WGL (1943) On the equation of diffusion in a turbulent medium. Proc R Soc Lond A 186:48–75CrossRefGoogle Scholar
  23. Van Kampen NG (1992) Stochastic processes in physics and chemistry, vol 1, chap 12. Elsevier, New York, 463 ppGoogle Scholar
  24. Wang LP, Maxey MR (1993) Settling velocity and concentration of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 256:27–68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sergey Belan
    • 1
    • 2
  • Vladimir Lebedev
    • 1
    • 2
  • Gregory Falkovich
    • 3
    • 4
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  2. 2.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  3. 3.Institute for Information Transmission ProblemsMoscowRussia
  4. 4.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations