Advertisement

Boundary-Layer Meteorology

, Volume 158, Issue 3, pp 489–499 | Cite as

Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes

  • P. Serrano-OrtizEmail author
  • E. P. Sánchez-Cañete
  • F. J. Olmo
  • S. Metzger
  • O. Pérez-Priego
  • A. Carrara
  • L. Alados-Arboledas
  • A. S. Kowalski
Notes and Comments

Abstract

The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation \((R_{\mathrm{n}})\) and soil heat fluxes (G) are treated differently, and typically only \(R_{\mathrm{n}}\) is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal \(R_{\mathrm{n}}\) and G. For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the energy balance closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal \(R_{\mathrm{n}}\), when only vertical \(R_{\mathrm{n}}\) measurements are available.

Keywords

Energy balance closure Hysteresis Net radiation  Soil heat flux Sloping terrains 

Notes

Acknowledgments

We thank the following for their critical opinions and valuable comments: Edward Ayres, Robert Clement, Thomas Foken, Hongyan Luo, Harry McCaughey, Natchaya Pingintha-Durden, and Jielun Sun. This research was funded in part by the Andalusia Regional Government through projects P12RNM-2409 and P10-RNM-6299, by the Spanish Ministry of Economy and Competitiveness though projects CGL2010-18782, CGL2014-52838-C2-1-R (GEISpain) and CGL2013-45410-R; and by European Community’s Seventh Framework Programme through INFRA-2010-1.1.16-262254 (ACTRIS), INFRA-2011-1-284274 (InGOS) and PEOPLE-2013-IOF-625988 (DIESEL) projects. The National Ecological Observatory Network is a project sponsored by the National Science Foundation and managed under cooperative agreement by NEON, Inc. This material is based upon work supported by the National Science Foundation under the grant DBI-0752017. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

  1. Alados I, Foyo-Moreno I, Alados-Arboledas L (2003) Relationship between net radiation and solar radiation for semi-arid shrub-land. Agric For Meteorol 116(3–4):221–227. doi: 10.1016/S0168-1923(03)00038-8 CrossRefGoogle Scholar
  2. Aubinet M (2008) Eddy covariance CO(2) flux measurements in nocturnal conditions: an analysis of the problem. Ecol Appl 18(6):1368–1378. doi: 10.1890/06-1336.1 CrossRefGoogle Scholar
  3. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer CH, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini P, Vesla T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–173CrossRefGoogle Scholar
  4. Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO\(_2\) advection in a sloping forest. Boundary-Layer Meteorol 108(3):397–417CrossRefGoogle Scholar
  5. Aubinet M, Berbigier P, Berhnofer CH, Cescatti A, Feigenwinter C, Granier A, Grünwald TH, Havrankova K, Beinesch B, Longdoz B, Marcolla B, Montagnini L, Sedlak P (2005) Comparing CO\(_2\) storage and advection conditions at night at different carboeuroflux sites. Boundary-Layer Meteorol 116(1):63–93. doi: 10.1007/s10546-004-7091-8 CrossRefGoogle Scholar
  6. Baldocchi DD, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer CH, David K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers Tm Paw UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434. doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
  7. Domingo F, Villagarcia L, Brenner AJ, Puigdefábregas J (2000) Measuring and modelling the radiation balance of a heterogeneous shrubland. Plant Cell Environ 23:27–38. doi: 10.1046/j.1365-3040.2000.00532.x CrossRefGoogle Scholar
  8. Etzold S, Buchmann N, Eugster W (2010) Contribution of advection to the carbon budget measured by eddy covariance at a steep mountain slope forest in Switzerland. Biogeoscience 7(8):2461–2475. doi: 10.5194/bg-7-2461-2010 CrossRefGoogle Scholar
  9. Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18(6):1351–1367. doi: 10.1890/06-0922.1 CrossRefGoogle Scholar
  10. Garnier BJ, Ohmura A (1968) A method of calculating the direct shortwave radiation income of slopes. J Appl Meteorol 7(5):796–800. doi: 10.1175/1520-0450(1968)007<0796:AMOCTD>2.0.CO;2
  11. Gu L, Falge EM, Boden T, Baldocchi D, Black TA, Saleska SR, Suni T, Verma SB, Vesala T, Wofsy SC, Xu L (2005) Objective threshold determination for nighttime eddy flux filtering. Agric For Meteorol 128:179–197. doi: 10.1016/j.agrformet.2004.11.006 CrossRefGoogle Scholar
  12. Hammerle A, Haslwanter A, Schmitt M, Bahn M, Tappeiner U, Cernuscas A, Wohlfahrt G (2007) Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope. Boundary-Layer Meteorol 122(2):397–416. doi: 10.1007/s10546-006-9109-x CrossRefGoogle Scholar
  13. Hiller R, Zeeman MJ, Eugster W (2008) Eddy-covariance flux measurements in the complex terrain of an alpine valley in Switzerland. Boundary-Layer Meteorol 127(3):449–467. doi: 10.1007/s10546-008-9267-0 CrossRefGoogle Scholar
  14. Holst T, Rost J, Mayer H (2005) Net radiation balance for two forested slopes on opposite sides of a valley. Int J Biometeorol 49(5):275–284. doi: 10.1007/s00484-004-0251-1 CrossRefGoogle Scholar
  15. Iqbal M (1983) Introduction to solar radiation. Academic Press, New York 390 ppGoogle Scholar
  16. Kaminski T, Rayner PJ, Voßbeck M, Scholze M, Koffi E (2012) Observing the continental-scale carbon balance: assessment of sampling complementarity and redundancy in a terrestrial assimilation system by means of quantitative network design. Atmos Chem Phys 12(16):7867–7879. doi: 10.5194/acp-12-7867-2012 CrossRefGoogle Scholar
  17. Koffi EN, Rayner PJ, Scholze M, Chevallier F, Kaminski T (2013) Quantifying the constraint of biospheric process parameters by CO\(_2\) concentration and flux measurement networks through a carbon cycle data assimilation system. Atmos Chem Phys 13(21):10555–10572. doi: 10.5194/acp-13-10555-2013 CrossRefGoogle Scholar
  18. Kowalski AS, Anthoni PM, Vong RJ, Delany AC, Maclean GD (1997) Deployment and evaluation of a system for ground-based measurement of cloud liquid water turbulent fluxes. J Atmos Ocean Technol 14:468–479CrossRefGoogle Scholar
  19. Kowalski S, Sartore M, Burlett R, Berbigier P, Loustau D (2003) The annual carbon budget of a French pine forest (Pinus pinaster) following harvest. Global Change Biol 9(7):1051–1065. doi: 10.1046/j.1365-2486.2003.00627.x CrossRefGoogle Scholar
  20. Leuning R, van Gorsel E, Massman WJ, Isaac PR (2012) Reflections on the surface energy imbalance problem. Agric For Meteorol 156:65–74. doi: 10.1016/j.agrformet.2011.12.002 CrossRefGoogle Scholar
  21. Massman WJ (1992) Correcting errors associated with soil heat flux measurements and estimating soil thermal properties from soil temperature and heat flux plate data. Agric Forest Meteorol 59(3–4):249–266. doi: 10.1016/0168-1923(92)90096-M CrossRefGoogle Scholar
  22. Matzinger N, Andretta M, van Gorsel E, Vogt R, Ohmura A, Rotach MW (2003) Surface radiation budget in an Alpine valley. Q J R Meteorol Soc 129(588):877–895. doi: 10.1256/qj.02.44 CrossRefGoogle Scholar
  23. Mauder M, Foken T (2004) Documentation and instruction manual of the eddy-covariance software package TK3. Abt Mikrometeorologie 46, 60 ppGoogle Scholar
  24. McMillen R (1988) An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol 43(3):231–245. doi: 10.1007/bf00128405 CrossRefGoogle Scholar
  25. Oliver HR (1992) Studies of surface energy balance of sloping terrain. Int J Climatol 12(1):55–68. doi: 10.1002/joc.3370120106 CrossRefGoogle Scholar
  26. Olmo FJ, Vida J, Castro-Diez Y, Alados-Arboledas L (1999) Prediction of global irradiance on inclined surfaces from horizontal global irradiance. Energy 24(8):689–704. doi: 10.1016/S0360-5442(99)00025-0 CrossRefGoogle Scholar
  27. Saitoh TM, Tamagawa I, Muraoka H, Koizumi H (2011) Energy balance closure over a cool temperate forest in steeply sloping topography during snowfall and snow-free periods. J Agric Meteorol 67(3):107–116. doi: 10.2480/agrmet.67.3.4 CrossRefGoogle Scholar
  28. Serrano-Ortiz P, Marañón-Jiménez S, Reverter BR, Sánchez-Castro EP, Castro J, Zamora R, Kowalski AS (2011) Post-fire salvage logging reduces carbon sequestration in Mediterranean coniferous forest. Forest Ecol Manag 262:2287–2296. doi: 10.1016/j.foreco.2011.08.023 CrossRefGoogle Scholar
  29. Shimizu T (2015) Effect of coordinate rotation systems on calculated fluxes over a forest in complex terrain: a comprehensive comparison. Boundary-Layer Meteorol 156:277–301. doi: 10.1007/s10546-015-0027-7 CrossRefGoogle Scholar
  30. Stoy P, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Altaf Arain M, Arneth A, Aurela M, Bernhofer C, Cescatti A, Dellwik E, Duce P, Gianelle D, van Gorsel E, Kiely G, Knohl A, Margolis H, MmCaughey H, Merbold L, Montagnani L, Papale D, Reichstein M, Saunders M, Serrano-Ortiz P, Sottocornola M, Spano D, Vaccari F, Varlagin A (2013) A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape-scale heterogeneity. Agric For Meteorol 171–172:137–152CrossRefGoogle Scholar
  31. Suyker AE, Verma SB (2001) Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Global Change Biol 7(3):279–289. doi: 10.1046/j.1365-2486.2001.00407.x CrossRefGoogle Scholar
  32. Tanner BD, Thurtell GW (1969) Research and development technical report: Anemoclinometer measurements of Reynold stress and het transport in the atmopheric surface layer. University of Wisconsin, Wisconsin, Grant Number DA-AMC-28-043-066-G022Google Scholar
  33. Turnipseed AA, Anderson DE, Blanken PD, Baugh WM, Monson RK (2003) Airflows and turbulent flux measurements in mountainous terrain: Part 1. Canopy and local effects. Agric For Meteorol 119(1–2), pp. 1–21, doi: 10.1016/S0168-1923(03)00136-9
  34. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106(447):85–100. doi: 10.1002/qj.49710644707 CrossRefGoogle Scholar
  35. Whiteman CD, Allwine KJ, Fritschen LJ, Orgill MM, Simpson JR (1989) Deep valley radiation and surface energy budget microclimates. Part I: Radiation. J Appl Meteorol 28(6):414–426Google Scholar
  36. Wilson K, Goldstein A, Flage E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Sm Verma, Valentini R (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113(1–4):223–243. doi: 10.1016/S0168-1923(02)00109-0 CrossRefGoogle Scholar
  37. Wohlfahrt G, Tasser E (2014) A mobile system for quantifying the spatial variability of the surface energy balance: design and application. Int J Biometeorol 59:617–627. doi: 10.1007/s00484-014-0875-8 CrossRefGoogle Scholar
  38. Zitouna-Chebbi R, Prévot L, Jacob F, Mougou R, Voltz M (2012) Assessing the consistency of eddy covariance measurements under conditions of sloping topography within a hilly agricultural catchment. Agric Forest Meteorol 164:123–135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • P. Serrano-Ortiz
    • 1
    • 2
    Email author
  • E. P. Sánchez-Cañete
    • 2
    • 3
  • F. J. Olmo
    • 2
    • 4
  • S. Metzger
    • 5
    • 6
  • O. Pérez-Priego
    • 7
  • A. Carrara
    • 8
  • L. Alados-Arboledas
    • 2
    • 4
  • A. S. Kowalski
    • 2
    • 4
  1. 1.Departamento de EcologíaUniversidad de GranadaGranadaSpain
  2. 2.Andalusian Institute for Earth System Research (CEAMA-IISTA)Universidad de GranadaGranadaSpain
  3. 3.B2 Earthscience, Biosphere 2University of ArizonaTucsonUSA
  4. 4.Departamento de Física AplicadaUniversidad de GranadaGranadaSpain
  5. 5.National Ecological Observatory Network (NEON)BoulderUSA
  6. 6.Institute for Arctic and Alpine ResearchUniversity of ColoradoBoulderUSA
  7. 7.Department of Biogeochemical IntegrationMax Planck Institute for BiogeochemistryJenaGermany
  8. 8.Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM)ValenciaSpain

Personalised recommendations