Advertisement

Boundary-Layer Meteorology

, Volume 157, Issue 2, pp 321–332 | Cite as

Capturing Cold-Air Flow Using Thermal Imaging

  • A. Martina GrudzielanekEmail author
  • Jan Cermak
Notes and Comments

Abstract

We present a thermal imaging field design for climatological studies with an application to microscale cold-air flow analysis. Measurements of microclimatic processes are often limited by a lack of spatial coherence and consequently incomplete information on spatial and temporal patterns in the airflow. We introduce and evaluate an approach for investigating cold-air flow using an infrared camera pointed at a custom-built projection screen. A statistical analysis of a cold-air-flow case study is presented that explores the potential and limitations of the proposed technique. Results indicate good compatibility with traditional methods, while spatial coherence in measurements is achieved. A few examples of additional information obtained from the thermal camera analysis are presented, including analyses of cold-air-flow characteristics.

Keywords

Atmospheric surface layer Cold-air flow Infrared imagery Surface temperatures 

Notes

Acknowledgments

The authors would like to thank two anonymous reviewers for advice and encouragement.

Supplementary material

Supplementary material 1 (avi 17520 KB)

References

  1. Allwine KJ, Lamb BK, Eskridge R (1992) Wintertime dispersion in a mountainous basin at Roanoke, Virginia: tracer study. J Appl Meteorol 31(11):1295–1311. doi: 10.1175/1520-0450(1992)031<1295:WDIAMB>2.0.CO;2
  2. Ball FK (1956) The theory of strong katabatic winds. Aust J Phys 9(3):373. doi: 10.1071/PH560373 CrossRefGoogle Scholar
  3. Beffrey G, Jaubert G, Dabas A (2004) Foehn flow and stable air mass in the Rhine valley: the beginning of a MAP event. Q J R Meteorol Soc 130(597):541–560. doi: 10.1256/qj.02.228 CrossRefGoogle Scholar
  4. Burkholder B, Shapiro A, Fedorovich E (2009) Katabatic flow induced by a cross-slope band of surface cooling. Acta Geophys 57(4). doi: 10.2478/s11600-009-0025-6
  5. Christen A, Meier F, Scherer D (2011) High-frequency fluctuations of surface temperatures in an urban environment. Theor Appl Climatol 108(1–2):301–324. doi: 10.1007/s00704-011-0521-x Google Scholar
  6. Clements CB, Whiteman CD, Horel JD (2003) Cold-air-pool structure and evolution in a mountain basin: Peter Sinks. Utah. J Appl Meteorol 42(6):752–768. doi: 10.1175/1520-0450(2003)042<0752:CSAEIA>2.0.CO;2
  7. Danjoux R, Pastor RR, Thunevin S (2011) Visualization of air flows with an infrared camera: presentation of a simple technique and examples of data analysis. Technical report. http://www.flir.com/WorkArea/linkit.aspx?LinkIdentifier=idItemID=50065libID=62979. Accessed 05 Apr 2015
  8. Defant F (1949) Zur Theorie der Hangwinde nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch Meteorol Geophys Bioklim Ser A 1(1):421–450CrossRefGoogle Scholar
  9. Dietrich H, Böhner J (2008) Cold air production and flow in a low mountain range landscape in Hessia (Germany). Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie(19):37–48Google Scholar
  10. Dorninger M, Whiteman CD, Bica B, Eisenbach S, Pospichal B, Steinacker R (2011) Meteorological events affecting cold-air pools in a small basin. J Appl Meteorol Climatol 50(11):2223–2234. doi: 10.1175/2011JAMC2681.1 CrossRefGoogle Scholar
  11. Foken T, Nappo CJ (2008) Micrometeorology. Springer, Berlin, 229 ppGoogle Scholar
  12. Garai A, Pardyjak E, Steeneveld G, Kleissl J (2013) Surface temperature and surface-layer turbulence in a convective boundary layer. Boundary-Layer Meteorol 148(1):51–72. doi: 10.1007/s10546-013-9803-4 CrossRefGoogle Scholar
  13. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows. Their structure and measurement. Oxford University Press, New York, 289 ppGoogle Scholar
  14. Lareau NP, Crosman E, Whiteman CD, Horel JD, Hoch SW, Brown WOJ, Horst TW (2013) The persistent cold-air pool study. Bull Am Meteorol Soc 94(1):51–63. doi: 10.1175/BAMS-D-11-00255.1 CrossRefGoogle Scholar
  15. Lehner M, Whiteman CD, Hoch SW (2011) Diurnal cycle of thermally driven cross-basin winds in Arizona’s meteor crater. J Appl Meteorol Climatol 50(3):729–744. doi: 10.1175/2010JAMC2520.1 CrossRefGoogle Scholar
  16. Mahrt L (2011) The near-calm stable boundary layer. Boundary-Layer Meteorol 140(3):343–360. doi: 10.1007/s10546-011-9616-2 CrossRefGoogle Scholar
  17. Mattsson JO (1969) Thermal patterns in the landscape recorded with infrared technique and simulated in model experiments. Geogr Ann Ser A 51:219–238Google Scholar
  18. Meier F, Scherer D, Richters J, Christen A (2011) Atmospheric correction of thermal-infrared imagery of the 3-D urban environment acquired in oblique viewing geometry. Atmos Meas Tech 4(5):909–922. doi: 10.5194/amt-4-909-2011 CrossRefGoogle Scholar
  19. Monti P, Fernando HJS, Princevac M, Chan W, Kowalewski TA, Parddyjac ER (2002) Observations of flow turbulence in the nocturnal boundary layer over a slope. J Atmos Sci 17:2513–2534CrossRefGoogle Scholar
  20. Oke TR (1987) Boundary layer climates, 2nd edn. Methuen, London, 435 ppGoogle Scholar
  21. Pypker TG, Unsworth M, Lamb B, Allwine E, Edburg S, Sulzman E, Mix AC, Bond BJ (2007) Cold air drainage in a forested valley: investigating the feasibility of monitoring ecosystem metabolism. Agric For Meteorol 147(3–4):149–166. doi: 10.1016/j.agrformet.2007.04.016 CrossRefGoogle Scholar
  22. Schwab A (ed) (2000) Reliefanalytische Verfahren zur Abschätzung nächtlicher Kaltluftbewegungen. Freiburger Geographische Hefte. Selbstverlag des Institutes für Physische Geographie der Albert-Ludwigs-Universität Freiburg i. Br., Freiburg, 10 ppGoogle Scholar
  23. Smedman A (1988) Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer. Boundary-Layer Meteorol 44(3):231–253. doi: 10.1007/BF00116064 CrossRefGoogle Scholar
  24. Soler M, Infante C, Buenestado P, Mahrt L (2002) Observations of nocturnal drainage flow in a shallow gully. Boundary-Layer Meteorol 105(2):253–273. doi: 10.1023/A:1019910622806 CrossRefGoogle Scholar
  25. Stadt Bochum (ed) (2001) Bochum Digital - Luftbilder - Stadtplan. CD-ROM, BochumGoogle Scholar
  26. Trachte K, Nauss T, Bendix J (2010) The impact of different terrain configurations on the formation and dynamics of katabatic flows: idealised case studies. Boundary-Layer Meteorol 134(2):307–325. doi: 10.1007/s10546-009-9445-8 CrossRefGoogle Scholar
  27. Vogt J (ed) (2001) Lokale Kaltluftabflüsse. Karlsruher Schriften zur Geographie und Geoökologie, vol 14. Universität Karlsruhe. Institut für Geographie und Geoökologie, Karlsruhe, 27 ppGoogle Scholar
  28. Whiteman CD, Hoch SW, Hahnenberger M, Muschinski A, Hohreiter V, Behn M, Cheon Y, Zhong S, Yao W, Fritts D, Clements CB, Horst TW, Brown WOJ, Oncley SP (2008) Metcrax 2006. Bull Am Meteorol Soc 89(11):1665–1680. doi: 10.1175/2008BAMS2574.1 CrossRefGoogle Scholar
  29. Yoshino MM (1984) Thermal belt and cold air drainage on the mountain slope and cold air lake in the basin at quiet, clear night. GeoJournal 8(3):235–250. doi: 10.1007/BF00446473 CrossRefGoogle Scholar
  30. Zhong S, Whiteman CD (2008) Downslope flows on a low-angle slope and their interactions with valley inversions, part II: numerical modeling. J Appl Meteorol Climatol 47(7):2039–2057. doi: 10.1175/2007JAMC1670.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of GeographyRuhr-Universität BochumBochumGermany

Personalised recommendations