Boundary-Layer Meteorology

, Volume 156, Issue 1, pp 145–155 | Cite as

Analysis of Boundary-Layer Statistical Properties at Dome C, Antarctica

  • Jean-François Rysman
  • Sébastien Verrier
  • Alain Lahellec
  • Christophe Genthon
Notes and Comments

Abstract

The atmospheric boundary layer over the Antarctic Plateau is unique on account of its isolated location and extreme stability. Here we investigate the characteristics of the boundary layer using wind and temperature measurements from a 45-m high tower located at Dome C. First, spectral analysis reveals that both fields have a scaling behaviour from 30 min to 10 days (spectral slope \(\beta \approx 2\)). Wind and temperature time series also show a multifractal behaviour. Therefore, it is possible to fit the moment-scaling function to the universal multifractal model and obtain multifractal parameters for temperature (\(\alpha \approx 1.51,\, C_1\approx 0.14\)) and wind speed (\(\alpha \approx 1.34, \, C_1\approx 0.13\)). The same analysis is repeated separately in winter and summer at six different heights. The \(\beta \) parameter shows a strong stratification with height especially in summer, implying that properties of turbulence change surprisingly rapidly from the ground to the top of the tower.

Keywords

Atmospheric boundary layer Dome C Meteorological tower Scaling Statistical properties 

Notes

Acknowledgments

Boundary-layer observations and research at Dome C were supported by the French Polar Institute (IPEV; CALVA program), Institut National des Sciences de l,Univers (Concordia and LEFE-CLAPA programs), and Observatoire des Sciences de l,Univers de Grenoble (OSUG). We are grateful to Yvon Lemaître for his precious help. The authors wish to thank two anonymous reviewers whose valuable feedback greatly improved the manuscript.

References

  1. de Montera L, Barthès L, Mallet C, Golé P (2009) The effect of rain-no rain intermittency on the estimation of the universal multifractals model parameters. J Hydrometeor 10:493–506. doi: 10.1175/2008JHM1040.1
  2. Fabry F (1996) On the determination of scale ranges for precipitation fields. J Geophys Res 101:12,819–12,826. doi: 10.1029/96JD00718 CrossRefGoogle Scholar
  3. Fraedrich K, Larnder C (1993) Scaling regimes of composite rainfall time series. Tellus A 45(4):289–298CrossRefGoogle Scholar
  4. Gage KS, Nastrom GD (1986) Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP. J Atmos Sci 43:729–740. doi: 10.1175/1520-0469 CrossRefGoogle Scholar
  5. Genthon C, Town MS, Six D, Favier V, Argentini S, Pellegrini A (2010) Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica. J Geophys Res Atmos 115:D05104. doi: 10.1029/2009JD012741 CrossRefGoogle Scholar
  6. Genthon C, Gallée H, Six D, Grigioni P, Pellegrini A (2013) Two years of atmospheric boundary layer observation on a 45-m tower at Dome C on the Antarctic plateau. J Geophys Res Atmos 118:3218–3232. doi: 10.1002/jgrd.50128 CrossRefGoogle Scholar
  7. Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the Sheba data. Boundary-Layer Meteorol 116:201–235. doi: 10.1007/s10546-004-2729-0 CrossRefGoogle Scholar
  8. Hudson SR, Brandt RE (2005) A Look at the surface-based temperature inversion on the antarctic plateau. J Climate 18:1673–1696. doi: 10.1175/JCLI3360.1 CrossRefGoogle Scholar
  9. King JC, Turner J (1997) Antarctic meteorology and climatology. Cambridge University Press, UK, 409 ppGoogle Scholar
  10. Lavallée D, Lovejoy S, Schertzer D, Ladoy P (1993) Nonlinear variability of landscape topography: multifractal analysis and simulation. In: DeCola L, Lam N (eds) Fractals and geography. Prentice Hall, Upper Saddle River, pp 158–192 308 ppGoogle Scholar
  11. Lovejoy S, Schertzer D (2010) Towards a new synthesis for atmospheric dynamics: space-time cascades. Atmos Res 96:1–52CrossRefGoogle Scholar
  12. Lovejoy S, Schertzer D (2011) Space-time cascades and the scaling of ECMWF reanalyses: fluxes and fields. J Geophys Res Atmos 116:D14117. doi: 10.1029/2011JD015654 CrossRefGoogle Scholar
  13. Nykanen DK (2008) Linkages between orographic forcing and the scaling properties of convective rainfall in mountainous regions. J Hydrometeorol 9:327–347. doi: 10.1175/2007JHM839.1 CrossRefGoogle Scholar
  14. Olsson J (1995) Limits and characteristics of the multifractal behaviour of a high-resolution rainfall time series. Nonlinear Proc Geoph 2:23–29CrossRefGoogle Scholar
  15. Pecknold S, Lovejoy S, Schertzer D, Hooge C, Malouin J (1993) The simulation of universal multifractals. In: Perdang JM, Lejeune A (eds) Cellular automata: prospects in astronomy and astrophysics, vol 1. World Scientific, Hackensack, pp 228–267, 416 ppGoogle Scholar
  16. Priestley MB (1981) Spectral analysis and time series. Academic Press, New York, 661 ppGoogle Scholar
  17. Purdy JC, Harris D, Austin GL, Seed AW, Gray W (2001) A case study of orographic rainfall processes incorporating multiscaling characterization techniques. J Geophys Res 106:7837–7845. doi: 10.1029/2000JD900622 CrossRefGoogle Scholar
  18. Rysman JF, Verrier S, Lemaître Y, Moreau E (2013) Space-time variability of the rainfall over the western Mediterranean region: a statistical analysis. J Geophys Res Atmos 118:8448–8459. doi: 10.1002/jgrd.50656 CrossRefGoogle Scholar
  19. Schertzer D, Lovejoy S (1987) Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J Geophys Res 92:9693–9714. doi: 10.1029/JD092iD08p09693 CrossRefGoogle Scholar
  20. Schmitt F, Lovejoy S, Schertzer D, Lavallée D, Hooge C (1992) Estimations directes des indices de multifractals universels dans le champ de vent et de température. C Rendues de l’Acad Sciences (Paris) 314:749–754Google Scholar
  21. She Z, Leveque E (1994) Universal scaling laws in fully developed turbulence. Phys Rev Lett 72:337–339CrossRefGoogle Scholar
  22. Stolle J, Lovejoy S, Schertzer D (2009) The stochastic multiplicative cascade structure of deterministic numerical models of the atmosphere. Nonlinear Proc Geophys 16:607–621CrossRefGoogle Scholar
  23. Stolle J, Lovejoy S, Schertzer D (2012) The temporal cascade structure of reanalyses and global circulation models. Q J R Meteorol Soc 138:1895–1913. doi: 10.1002/qj.1916 CrossRefGoogle Scholar
  24. Tessier Y, Lovejoy S, Schertzer D (1993) Universal multifractals: theory and observations for rain and clouds. Appl Meteorol 32:223–250. doi: 10.1175/1520-0450 CrossRefGoogle Scholar
  25. Travouillon T, Ashley MCB, Burton MG, Storey JWV, Loewenstein RF (2003) Atmospheric turbulence at the South Pole and its implications for astronomy. Astron Astrophys 400:1163–1172. doi: 10.1051/0004-6361:20021814 CrossRefGoogle Scholar
  26. Verrier S, Mallet C, Barthès L (2011) Multiscaling properties of rain in the time domain, taking into account rain support biases. J Geophys Res Atmos 116:D20119. doi: 10.1029/2011JD015719 CrossRefGoogle Scholar
  27. Yaglom AM (1966) The influence of fluctuations in energy dissipation on the shape of turbulence characteristics in the inertial interval. Soviet Phys Doklady 11:26–30Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jean-François Rysman
    • 1
  • Sébastien Verrier
    • 2
  • Alain Lahellec
    • 3
  • Christophe Genthon
    • 4
  1. 1.UPMC Univ. Paris 06, Université Versailles St-Quentin, CNRS/INSU, LATMOS-IPSLGuyancourtFrance
  2. 2.LOCEAN (UPMC/IPSL), CNESParisFrance
  3. 3.UPMC Univ., Paris 06Laboratoire de Météorologie DynamiqueParisFrance
  4. 4.UJF - Grenoble 1 / CNRS Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE)GrenobleFrance

Personalised recommendations