Boundary-Layer Meteorology

, Volume 156, Issue 1, pp 73–89 | Cite as

Approximate Analytical Solution to Diurnal Atmospheric Boundary-Layer Growth Under Well-Watered Conditions

  • J. R. Rigby
  • Jun Yin
  • John D. Albertson
  • Amilcare Porporato
Article

Abstract

Simplified numerical models of the atmospheric boundary layer (ABL) are useful both for understanding the underlying dynamics and potentially providing parsimonious modelling approaches for inclusion in larger models. Herein the governing equations of a simplified slab model of the uniformly mixed, purely convective, diurnal ABL are shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed in integral form. By employing a linearized saturation vapour relation, the height of the mixed layer is shown to obey a non-linear ordinary differential equation with quadratic dependence on ABL height. A perturbation solution provides general analytical approximations, of which the leading term is shown to represent the contribution under equilibrium evaporation. These solutions allow the diurnal evolution of the height, potential temperature, and specific humidity (i.e., also vapour pressure deficit) of the mixed layer to be expressed analytically for arbitrary radiative forcing functions.

Keywords

Analytical solution Atmospheric boundary layer Bowen ratio Equilibrium evaporation Evaporative fraction  Mixed-layer model Perturbation theory 

References

  1. Allen RG, Pereira LS, Raes D, Smith M et al (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations, Rome, 300 ppGoogle Scholar
  2. Angevine W (2008) Transitional, entraining, cloudy, and coastal boundary layers. Acta Geophys 56(1):2–20CrossRefGoogle Scholar
  3. Ball F (1960) Control of inversion height by surface heating. Q J R Meteorol Soc 86(370):483–494CrossRefGoogle Scholar
  4. Batchvarova E, Gryning SE (1991) Applied model for the growth of the daytime mixed layer. Boundary-Layer Meteorol 56(3):261–274CrossRefGoogle Scholar
  5. Batchvarova E, Gryning SE (1994) An applied model for the height of the daytime mixed layer and the entrainment zone. Boundary-Layer Meteorol 71(3):311–323CrossRefGoogle Scholar
  6. Betts A (1973) Non-precipitating cumulus convection and its parameterization. Q J R Meteorol Soc 99(419):178–196CrossRefGoogle Scholar
  7. Betts A (1992) Fife atmospheric boundary layer budget methods. J Geophys Res Atmos 97(D17):18,523–18,531CrossRefGoogle Scholar
  8. Betts AK (1994) Relation between equilbrium evaporation and the saturation pressure budget. Boundary-Layer Meteorol 71(3):235–245CrossRefGoogle Scholar
  9. Brutsaert W (1987) Nearly steady convection and the boundary-layer budgets of water vapor and sensible heat. Boundary-Layer Meteorol 39(3):283–300CrossRefGoogle Scholar
  10. Brutsaert W (2005) Hydrology: an introduction. Cambridge University Press, New York, 605 ppGoogle Scholar
  11. Canut G, Couvreux F, Lothon M, Pino D, Saïd F (2012) Observations and large-eddy simulations of entrainment in the sheared sahelian boundary layer. Boundary-Layer Meteorol 142(1):79–101CrossRefGoogle Scholar
  12. Carson D (1973) The development of a dry inversion-capped convectively unstable boundary layer. Q J R Meteorol Soc 99(421):450–467CrossRefGoogle Scholar
  13. Culf AD (1994) Equilibrium evaporation beneath a growing convective boundary layer. Boundary-Layer Meteorol 70(1–2):37–49CrossRefGoogle Scholar
  14. De Bruin H (1983) A model for the priestley-taylor parameter \(\alpha \). J Clim Appl Meteorol 22(4):572–578CrossRefGoogle Scholar
  15. Driedonks A (1982a) Models and observations of the growth of the atmospheric boundary layer. Boundary-Layer Meteorol 23(3):283–306CrossRefGoogle Scholar
  16. Driedonks A (1982b) Sensitivity analysis of the equations for a convective mixed layer. Boundary-Layer Meteorol 22(4):475–480CrossRefGoogle Scholar
  17. Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge, 316 ppGoogle Scholar
  18. Hubbe J, Doran J, Liljegren J, Shaw W (1997) Observations of spatial variations of boundary layer structure over the southern great plains cloud and radiation testbed. J Appl Meteorol 36(9):1221–1231CrossRefGoogle Scholar
  19. Juang JY, Porporato A, Stoy PC, Siqueira MS, Oishi AC, Detto M, Kim HS, Katul GG (2007) Hydrologic and atmospheric controls on initiation of convective precipitation events. Water Resour Res 43(3):W03,421Google Scholar
  20. Kim C, Entekhabi D (1998) Feedbacks in the land-surface and mixed-layer energy budgets. Boundary-Layer Meteorol 88(1):1–21CrossRefGoogle Scholar
  21. Konings AG, Katul GG, Porporato A (2010) The rainfall-no rainfall transition in a coupled land-convective atmosphere system. Geophys Res Lett 37(14):L14,401CrossRefGoogle Scholar
  22. Lilly D (1968) Models of cloud-topped mixed layers under a strong inversion. Q J R Meteorol Soc 94(401):292–309CrossRefGoogle Scholar
  23. Logan JD (2013) Applied mathematics. Wiley, Hobokan, 658 ppGoogle Scholar
  24. Lyons T (2002) Clouds prefer native vegetation. Meteorol Atmos Phys 80(1–4):131–140CrossRefGoogle Scholar
  25. Mahrt L (1976) Mixed layer moisture structure. Mon Weather Rev 104(11):1403–1407CrossRefGoogle Scholar
  26. McNaughton K (1976) Evaporation and advection I: evaporation from extensive homogeneous surfaces. Q J R Meteorol Soc 102(431):181–191CrossRefGoogle Scholar
  27. McNaughton K, Spriggs T (1986) A mixed-layer model for regional evaporation. Boundary-Layer Meteorol 34(3):243–262CrossRefGoogle Scholar
  28. Pelly J, Belcher S (2001) A mixed-layer model of the well-mixed stratocumulus-topped boundary layer. Boundary-Layer Meteorol 100(1):171–187CrossRefGoogle Scholar
  29. Porporato A (2009) Atmospheric boundary-layer dynamics with constant Bowen ratio. Boundary-Layer Meteorol 132(2):227–240CrossRefGoogle Scholar
  30. Priestley C, Taylor R (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92CrossRefGoogle Scholar
  31. Raupach M (1998) Radiative physiological, aerodynamic and boundary-layer feedbacks on the terrestrial surface energy balance. Glob Change Biol 4:477–494CrossRefGoogle Scholar
  32. Raupach M (2000) Equilibrium evaporation and the convective boundary layer. Boundary-Layer Meteorol 96(1–2):107–142CrossRefGoogle Scholar
  33. Raupach M (2001) Combination theory and equilibrium evaporation. Q J R Meteorol Soc 127(574):1149–1181CrossRefGoogle Scholar
  34. Santanello JA, Friedl MA, Kustas WP (2005) An empirical investigation of convective planetary boundary layer evolution and its relationship with the land surface. J Appl Meteorol 44(6):917–932CrossRefGoogle Scholar
  35. Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34(7):1001–1027CrossRefGoogle Scholar
  36. Siqueira M, Katul G, Porporato A (2009) Soil moisture feedbacks on convection triggers: the role of soil–plant hydrodynamics. J Hydrometeorol 10(1):96–112CrossRefGoogle Scholar
  37. Stull RB (1976) The energetics of entrainment across a density interface. J Atmos Sci 33(7):1260–1267CrossRefGoogle Scholar
  38. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 666 ppGoogle Scholar
  39. Tennekes H (1973) A model for the dynamics of the inversion above a convective boundary layer. J Atmos Sci 30(4):558–567CrossRefGoogle Scholar
  40. Van Heerwaarden CC, Vilà-Guerau de Arellano J, Moene AF, Holtslag AA (2009) Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Q J R Meteorol Soc 135(642):1277–1291CrossRefGoogle Scholar
  41. Zaitsev VF, Polyanin AD (2012) Handbook of exact solutions for ordinary differential equations. CRC Press, Boca Raton, 791 ppGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2015

Authors and Affiliations

  • J. R. Rigby
    • 1
  • Jun Yin
    • 2
  • John D. Albertson
    • 2
  • Amilcare Porporato
    • 2
  1. 1.USDA-ARS National Sedimentation LaboratoryOxfordUSA
  2. 2.Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA

Personalised recommendations