Boundary-Layer Meteorology

, Volume 156, Issue 1, pp 53–71 | Cite as

Wind Statistics from a Forested Landscape

  • Johan ArnqvistEmail author
  • Antonio Segalini
  • Ebba Dellwik
  • Hans Bergström


An analysis and interpretation of measurements from a 138-m tall tower located in a forested landscape is presented. Measurement errors and statistical uncertainties are carefully evaluated to ensure high data quality. A 40\(^\circ \) wide wind-direction sector is selected as the most representative for large-scale forest conditions, and from that sector first-, second- and third-order statistics, as well as analyses regarding the characteristic length scale, the flux-profile relationship and surface roughness are presented for a wide range of stability conditions. The results are discussed with focus on the validity of different scaling regimes. Significant wind veer, decay of momentum fluxes and reduction in shear length scales with height are observed for all stability classes, indicating the influence of the limited depth of the boundary layer on the measured profiles. Roughness sublayer characteristics are however not detected in the presented analysis. Dimensionless gradients are shown to follow theoretical curves up to 100 m in stable conditions despite surface-layer approximations being invalid. This is attributed to a balance of momentum decay and reduced shear length scale growth with height. The wind profile shows a strong stability dependence of the aerodynamic roughness length, with a 50 % decrease from neutral to stable conditions.


Above-canopy turbulence statistics Atmospheric boundary layer  Roughness length Surface-layer scaling  Wind power 



This work is part of Vindforsk III, a research program sponsored by the Swedish Energy Agency. Vattenfall Vindkraft AB is greatly acknowledged for making their data available for the present work.


  1. Amiro BD (1990) Comparison of turbulence statistics within 3 boreal forest canopies. Boundary-Layer Meteorol 51(1–2):99–121CrossRefGoogle Scholar
  2. Arnqvist J, Bergström H (2014) Flux-profile relation with roughness sublayer correction. Q J R Meteorol Soc. doi: 10.1002/qj.2426
  3. Baas P, Steeneveld GJ, Van de Wiel JH, Holtslag AAM (2006) Exploring self-correlation in fluxgradient relationships for stably stratified conditions. J Atmos Sci 63:3045–3054CrossRefGoogle Scholar
  4. Baldocchi DD, Meyers TT (1988) Turbulence structure in a deciduous forest. Boundary-Layer Meteorol 43(4):345–364CrossRefGoogle Scholar
  5. Bechmann A, Berg J, Courtney M, Jørgensen H, Mann J, Sørensensen N (2009) The bolund experiment: Overview and background. Tech. rep., Tech. Rep. Risø-R-1658(EN), Risø DTU National Laboratory for sustainable energyGoogle Scholar
  6. Bergström H, Högström U (1989) Turbulent exchange above a pine forest.II. Organized structures. Boundary-Layer Meteorol 49:231–263CrossRefGoogle Scholar
  7. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationship in the atmospheric surface-layer. J Atmos Sci 28:181–189CrossRefGoogle Scholar
  8. Dellwik E, Jensen NO (2000) Internal equilibrium layer growth over forest. Theor Appl Climatol 66(3–4):173–184CrossRefGoogle Scholar
  9. Dellwik E, Jensen NO (2005) Fluxprofile relationships over a fetch limited beech forest. Boundary-Layer Meteorol 225:179–204CrossRefGoogle Scholar
  10. Dellwik E, Mann J, Larsen KS (2010) Flow tilt angles near forest edges-part 1: Sonic anemometry. Biogeosciences 7(5):1745–1757CrossRefGoogle Scholar
  11. Dellwik E, Bingöl F, Mann J (2014) Flow distortion at a dense forest edge. Q J R Meteorol Soc 140:676–686CrossRefGoogle Scholar
  12. Drazin PG (2002) Introduction to hydrodynamic stability. Cambridge University Press, UK, 258 ppGoogle Scholar
  13. Finnigan JJ (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571CrossRefGoogle Scholar
  14. Garratt JR (1980) Surface influence upon vertical profiles in the atmospheric near-surface layer. Q J R Meteorol Soc 106:803–819CrossRefGoogle Scholar
  15. Garratt JR (1992) The Atmospheric Boundary Layer. Cambridge University Press, UK, 316 ppGoogle Scholar
  16. Gash JHC (1986) Observations of turbulence downwind of a forest-heath interface. Boundary-Layer Meteorol 36(3):227–237CrossRefGoogle Scholar
  17. Gryning SE, Batchvarova E, Brümmer B, Jørgensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface boundary-layer. Boundary-Layer Meteorol 124:251–268CrossRefGoogle Scholar
  18. Harman IN, Finnigan JJ (2007) A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorol 123:339–363CrossRefGoogle Scholar
  19. Holtslag AAM (1984) Estimates of diabatic wind-speed profiles from near-surface weather observations. Boundary-Layer Meteorol 29:225–250CrossRefGoogle Scholar
  20. Högström U (1996) Review of some basic characteristics of the atmospheric surface-layer. Boundary-Layer Meteorol 78:215–246CrossRefGoogle Scholar
  21. Højstrup J (1993) A statistical-data screening-procedure. Meas Sci Technol 4(2):153–157CrossRefGoogle Scholar
  22. Irvine MR, Gardiner BA, Hill MK (1997) The evolution of turbulence across a forest edge. Boundary-Layer Meteorol 84(3):467–496CrossRefGoogle Scholar
  23. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary-layer flows: their structure and measurements. Oxford University Press, New York, 289 ppGoogle Scholar
  24. Lenschow D, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes and other turbulence statistics? J Atmos Ocean Technol 11(3):661–673CrossRefGoogle Scholar
  25. Liu HP, Peters G, Foken T (2001) New equations for omnidirectional sonic temperature variance and buoyancy heat flux with a sonic anemometer. Boundary-Layer Meteorol 100:259–468CrossRefGoogle Scholar
  26. Lumley J, Panofsky H (1964) The structure of atmospheric turbulence. Interscience, New York, 239 ppGoogle Scholar
  27. Mahrt L, Moore E, Vickers D, Jensen NO (2001) Dependence of turbulent and mesoscale velocity variances on scale and stability. J Appl Meteorol 40(3):628–641CrossRefGoogle Scholar
  28. Mammarella I, Dellwik E, Jensen NO (2008) Turbulence spectra, shear stress and turbulent kinetic energy budgets above two beech forest sites in denmark. Tellus B 60(2):179–187CrossRefGoogle Scholar
  29. Meroney RN (1968) Characteristics of Wind and Turbulence in and above Model Forests. J Appl Meteorol 7:780–788CrossRefGoogle Scholar
  30. Mölder M, Lindroth A (1999) Thermal roughness length of a boreal forest. Agric For Meteorol 98(9):659–670CrossRefGoogle Scholar
  31. Mölder M, Grelle A, Lindroth A, Halldin S (1999) Flux-profile relationships over a boreal forest—roughness sublayer corrections. Agric For Meteorol 98(9):645–658CrossRefGoogle Scholar
  32. Panofsky HA, Dutton JA (1984) Atmospheric turbulence: models and methods for engineering applications. Wiley, New York, 418 ppGoogle Scholar
  33. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable surface-layer. J Appl Meteorol 9:857–861CrossRefGoogle Scholar
  34. Peña A, Gryning SE, Hasager CB (2010) Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theor Appl Climatol 100(3–4):325–335CrossRefGoogle Scholar
  35. Pielke R. A. Sr. (2002) Mesoscale meteorological modelling. Academic Press, Orlando, 676 ppGoogle Scholar
  36. Pietri L, Petroff A, Amielh M, Anselmet F (2009) Turbulence characteristics within sparse and dense canopies. Environ Fluid Mech 9:297–320CrossRefGoogle Scholar
  37. Queck R, Bienert A, Maas HG, Harmansa S, Goldberg V, Bernhofer C (2012) Wind fields in heterogeneous conifer canopies: parameterisation of momentum absorption using high-resolution 3D vegetation scans. Eur J For Res 131:165–176CrossRefGoogle Scholar
  38. Raupach MR (1979) Anomalies in flux-gradient relationships over forest. Boundary-Layer Meteorol 16:467–486CrossRefGoogle Scholar
  39. Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78:351–382CrossRefGoogle Scholar
  40. Rossby C, Montgomery R (1935) The layers of frictional influence in wind and ocean currents. Pap Phys Oceanogr Meteorol 3(3):101Google Scholar
  41. Salomons E M (2001) Computational atmospheric acoustics. Kluwer Academic Publishers, Berlin, 335 ppGoogle Scholar
  42. Segalini A, Alfredsson PH (2012) Techniques for eduction of coherent structures from flow measurements in the atmospheric boundary-layer. Boundary-Layer Meteorol 143:433–450CrossRefGoogle Scholar
  43. Segalini A, Fransson JHM, Alfredsson PH (2013) Scaling laws in canopy flows: a wind-tunnel analysis. Boundary-Layer Meteorol 148:269–283CrossRefGoogle Scholar
  44. Shaw RH, Brunet Y, Finnigan JJ, Raupach MR (1995) A wind tunnel study of air flow in waving wheat: two-point velocity statistics. Boundary-Layer Meteorol 76:349–376CrossRefGoogle Scholar
  45. Thomas C, Mayer JC, Meixner FX, Foken T (1989) Analysis of low-frequency turbulence above tall vegetation using a doppler sodar. Boundary-Layer Meteorol 119:563–587CrossRefGoogle Scholar
  46. Träumner K, Wieser A, Ruck B, Frank C, Röhner L, Kottmeier C (2012) The suitability of doppler lidar for characterizing the wind field above forest edges. Forestry 85:399–412CrossRefGoogle Scholar
  47. Troen I, Petersen EL (1989) European wind atlas. Risø National Laboratory, 656 ppGoogle Scholar
  48. Wenzel A, Kalthoff N, Horlacher V (1997) On the profiles of wind velocity in the roughness sublayer above a coniferous forest. Boundary-Layer Meteorol 84:219–230CrossRefGoogle Scholar
  49. Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, Cambridge, 393 ppGoogle Scholar
  50. Zilitinkevich S, Mammarella I, Baklanov A, Joffre S (2009) The effect of stratification on the aerodynamic roughness length. In: Baklanov A, Grimmond S, Mahura A, Athanassiadou M (eds) Meteorological and air quality models for urban areas. Springer, Berlin, pp 59–66. doi: 10.1007/978-3-642-00298-4_7

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Johan Arnqvist
    • 1
    Email author
  • Antonio Segalini
    • 2
  • Ebba Dellwik
    • 3
  • Hans Bergström
    • 1
  1. 1.Department of Earth Sciences, MeteorologyUppsala UniversityUppsalaSweden
  2. 2.Linné FLOW CentreKTH MechanicsStockholmSweden
  3. 3.DTU Wind EnergyTechnical University of DenmarkRoskildeDenmark

Personalised recommendations