Boundary-Layer Meteorology

, Volume 156, Issue 2, pp 191–210 | Cite as

Predictability of Turbulent Flow in Street Canyons

Article

Abstract

Although predictability is a subject of great importance in atmospheric modelling, there has been little research on urban boundary-layer flows. Here the predictability of street-canyon flow is examined numerically via large-eddy simulation of a unit-aspect-ratio canyon and neutrally stratified atmosphere. In spectral space there is indication of cascade-like behaviour away from the canyon at early times, but the error growth is essentially independent of scale inside the canyon; in physical space the error field is rather inhomogeneous and shows clear differences among the canyon, shear layer and inertial sublayer. The error growth is largely driven by the shear layer: errors generated above roof level are advected into the canyon while contributions from intermittent bursting and in situ development within the canyon play a relatively minor role. This work highlights differences between the predictability of urban flows and canonical turbulent flows and should be useful in developing modelling strategies for more realistic time-dependent urban flows.

Keywords

Predictability Street canyons Turbulence 

Notes

Acknowledgments

Helpful comments and suggestions were received from the anonymous referees. This work was supported financially by City University of Hong Kong through a Strategic Research Grant (Project 7004165).

References

  1. Barlow J, Dobre A, Smalley R, Arnold S, Tomlin A, Belcher S (2009) Referencing of street-level flows measured during the DAPPLE 2004 campaign. Atmos Environ 43(34):5536–5544. doi: 10.1016/j.atmosenv.2009.05.021 CrossRefGoogle Scholar
  2. Basdevant C, Philipovitch T (1994) On the validity of the “Weiss criterion” in two-dimensional turbulence. Physica D 73(1–2):17–30. doi: 10.1016/0167-2789(94)90222-4 CrossRefGoogle Scholar
  3. Basdevant C, Legras B, Sadourny R, Béland M (1981) A study of barotropic model flows: Intermittency, waves and predictability. J Atmos Sci 38(11):2305–2326. doi: 10.1175/1520-0469(1981)038<2305:ASOBMF>2.0.CO;2
  4. Belcher SE (2005) Mixing and transport in urban areas. Philos Trans R Soc A 363:2947–2968CrossRefGoogle Scholar
  5. Brown M, Lawson R, Decroix D, Lee R (2000) Mean flow and turbulence measurements around a 2-D array of buildings in a wind tunnel. In: Proceedings of the 11th joint AMS/AWMA conference in applied air pollution meteorologyGoogle Scholar
  6. Cheng W, Liu CH (2011) Large-eddy simulation of flow and pollutant transports in and above two-dimensional idealized street canyons. Boundary-Layer Meteorol 139(3):411–437. doi: 10.1007/s10546-010-9584-y CrossRefGoogle Scholar
  7. Coceal O, Dobre A, Thomas TG (2007) Unsteady dynamics and organized structures from DNS over an idealized building canopy. Int J Climatol 27(14):1943–1953. doi: 10.1002/joc.1549 CrossRefGoogle Scholar
  8. Cui Z, Cai X, J Baker C (2004) Large-eddy simulation of turbulent flow in a street canyon. Q J R Meteorol Soc 130(599):1373–1394. doi: 10.1256/qj.02.150 CrossRefGoogle Scholar
  9. Deardorff J (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18(4):495–527. doi: 10.1007/BF00119502 CrossRefGoogle Scholar
  10. Dobre A, Arnold S, Smalley R, Boddy J, Barlow J, Tomlin A, Belcher S (2005) Flow field measurements in the proximity of an urban intersection in London, UK. Atmos Environ 39(26):4647–4657. doi: 10.1016/j.atmosenv.2005.04.015 CrossRefGoogle Scholar
  11. Durran DR, Gingrich M (2014) Atmospheric predictability: why butterflies are not of practical importance. J Atmos Sci 71(7):2476–2488. doi: 10.1175/JAS-D-14-0007.1 CrossRefGoogle Scholar
  12. Foken T (2008) Micrometeorology. Springer, Berlin, p 306Google Scholar
  13. Inagaki A, Castillo M, Yamashita Y, Kanda M, Takimoto H (2012) Large-eddy simulation of coherent flow structures within a cubical canopy. Boundary-Layer Meteorol 142(2):207–222. doi: 10.1007/s10546-011-9671-8 CrossRefGoogle Scholar
  14. Kalnay E (2002) Atmospheric modelling, data assimilation and predictability. Cambridge University Press, Cambridge, p 364Google Scholar
  15. Kanda M (2006) Large-eddy simulations on the effects of surface geometry of building arrays on turbulent organized structures. Boundary-Layer Meteorol 118(1):151–168. doi: 10.1007/s10546-005-5294-2 CrossRefGoogle Scholar
  16. Leith CE, Kraichnan RH (1972) Predictability of turbulent flows. J Atmos Sci 29(6):1041–1058.doi: 10.1175/1520-0469(1972)029<1041:POTF>2.0.CO;2
  17. Letzel MO, Krane M, Raasch S (2008) High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos Environ 42(38):8770–8784. doi: 10.1016/j.atmosenv.2008.08.001 CrossRefGoogle Scholar
  18. Liu CH, Barth M (2002) Large-eddy simulation of flow and scalar transport in a modeled street canyon. J Appl Meteorol 41(6):660–673CrossRefGoogle Scholar
  19. Lorenz EN (1969) The predictability of a flow which possesses many scales of motion. Tellus 21(3):289–307. doi: 10.1111/j.2153-3490.1969.tb00444.x CrossRefGoogle Scholar
  20. Meroney RN, Pavageau M, Rafailidis S, Schatzmann M (1996) Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons. J Wind Eng Ind Aerodyn 62(1):37–56. doi: 10.1016/S0167-6105(96)00057-8
  21. Métais O, Lesieur M (1986) Statistical predictability of decaying turbulence. J Atmos Sci 43(9):857–870. doi: 10.1175/1520-0469(1986)043<0857:SPODT>2.0.CO;2
  22. Michioka T, Sato A (2012) Effect of incoming turbulent structure on pollutant removal from two-dimensional street canyon. Boundary-Layer Meteorol 145(3):469–484. doi: 10.1007/s10546-012-9733-6 CrossRefGoogle Scholar
  23. Ngan K, Eperon GE (2012) Middle atmosphere predictability in a numerical weather prediction model: revisiting the inverse error cascade. Q J R Meteorol Soc 138(666):1366–1378. doi: 10.1002/qj.984 CrossRefGoogle Scholar
  24. Ngan K, Straub DN, Bartello P (2004) Three-dimensionalization of freely-decaying two-dimensional turbulence. Phys Fluids 16(8):2918–2932. doi: 10.1063/1.1763191 CrossRefGoogle Scholar
  25. Ngan K, Straub DN, Bartello P (2005) Aspect ratio effects in quasi-two-dimensional turbulence. Phys Fluids 17(12):125102. doi: 10.1063/1.2139685 CrossRefGoogle Scholar
  26. Ngan K, Bartello P, Straub DN (2009) Predictability of rotating stratified turbulence. J Atmos Sci 66(5):1384–1400. doi: 10.1175/2008JAS2799.1 CrossRefGoogle Scholar
  27. Oke T (1988) Street design and urban canopy layer climate. Energy Build 11(1–3):103–113. doi: 10.1016/0378-7788(88)90026-6
  28. Palmer TN (2000) Predicting uncertainty in forecasts of weather and climate. Rep Prog Phys 63(2):71CrossRefGoogle Scholar
  29. Palmer T, Hagedorn R (eds) (2006) Predictability of weather and climate. Cambridge University Press, Cambridge, p 702Google Scholar
  30. Park SB, Baik JJ (2013) A large-eddy simulation study of thermal effects on turbulence coherent structures in and above a building array. J Appl Meteorol Climatol 52(6):1348–1365. doi: 10.1175/JAMC-D-12-0162.1 CrossRefGoogle Scholar
  31. Park SB, Baik JJ, Raasch S, Letzel MO (2012) A large-eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon. J Appl Meteorol Climatol 51(5):829–841. doi: 10.1175/JAMC-D-11-0180.1 CrossRefGoogle Scholar
  32. Raasch S, Schröter M (2001) PALM—a large-eddy simulation model performing on massively parallel computers. Meteorol Z 10(5):363–372. doi: 10.1127/0941-2948/2001/0010-0363 CrossRefGoogle Scholar
  33. Straub DN (2003) Instability of 2D flows to hydrostatic 3D perturbations. J Atmos Sci 60(1):79–102. doi: 10.1175/1520-0469(2003)060<0079:IOFTHP>2.0.CO;2
  34. Takimoto H, Sato A, Barlow J, Moriwaki R, Inagaki A, Onomura S, Kanda M (2011) Particle image velocimetry measurements of turbulent flow within outdoor and indoor urban scale models and flushing motions in urban canopy layers. Boundary-Layer Meteorol 140(2):295–314. doi: 10.1007/s10546-011-9612-6 CrossRefGoogle Scholar
  35. Tribbia JJ, Baumhefner DP (2004) Scale interactions and atmospheric predictability: an updated perspective. Mon Weather Rev 132(3):703–713. doi: 10.1175/1520-0493(2004)132<0703:SIAAPA>2.0.CO;2
  36. Uehara K, Murakami S, Oikawa S, Wakamatsu S (2000) Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmos Environ 34(10):1553–1562. doi: 10.1016/S1352-2310(99)00410-0 CrossRefGoogle Scholar
  37. Weiss J (1991) The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D 48(2–3):273–294. doi: 10.1016/0167-2789(91)90088-Q CrossRefGoogle Scholar
  38. Wicker LJ, Skamarock WC (2002) Time-splitting methods for elastic models using forward time schemes. Mon Weather Rev 130(8):2088–2097. doi: 10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Energy and EnvironmentCity University of Hong KongKowloonHong Kong
  2. 2.Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and EnvironmentCity University of Hong KongKowloonHong Kong

Personalised recommendations