Boundary-Layer Meteorology

, Volume 155, Issue 3, pp 459–482 | Cite as

On the Offshore Advection of Boundary-Layer Structures and the Influence on Offshore Wind Conditions

  • Martin Dörenkämper
  • Michael Optis
  • Adam Monahan
  • Gerald Steinfeld
Article

Abstract

The coastal discontinuity imposes strong signals to the atmospheric conditions over the sea that are important for wind-energy potential. Here, we provide a comprehensive investigation of the influence of the land–sea transition on wind conditions in the Baltic Sea using data from an offshore meteorological tower, data from a wind farm, and mesoscale model simulations. Results show a strong induced stable stratification when warm inland air flows over a colder sea. This stratification demonstrates a strong diurnal pattern and is most pronounced in spring when the land–sea temperature difference is greatest. The strength of the induced stratification is proportional to this parameter and inversely proportional to fetch. Extended periods of stable stratification lead to increased influence of inertial oscillations and increased frequency of low-level jets. Furthermore, heterogeneity in land-surface roughness along the coastline is found to produce pronounced horizontal streaks of reduced wind speeds that under stable stratification are advected several tens of kilometres over the sea. The intensity and length of the streaks dampen as atmospheric stability decreases. Increasing sea surface roughness leads to a deformation of these streaks with increasing fetch. Slight changes in wind direction shift the path of these advective streaks, which when passing through an offshore wind farm are found to produce large fluctuations in wind power. Implications of these coastline effects on the accurate modelling and forecasting of offshore wind conditions, as well as damage risk to the turbine, are discussed.

Keywords

Coastal meteorology Low-level jets Offshore wind farms  Stable stratification Wind energy 

References

  1. Baas P, Bosveld F, Holtslag A (2009) A climatology of nocturnal low-level jets at Cabauw. J Appl Meteorol 48:1627–1642. doi:10.1175/2009JAMC1965.1 CrossRefGoogle Scholar
  2. Barthelmie R, Badger J, Pryor S, Hasager CB, Christiansen MB, Jørgensen B (2007) Offshore coastal wind speed gradients: issues for the design and development of large offshore windfarms. Wind Eng 31(6):369–382. doi:10.1260/030952407784079762 CrossRefGoogle Scholar
  3. Bergström H (2001) Boundary-layer modelling for wind climate estimates. Wind Eng 25(5):289–299. doi:10.1260/030952401760177864 CrossRefGoogle Scholar
  4. Csanady G (1974) Equilibrium theory of the planetary boundary layer with an inversion lid. Boundary-Layer Meteorol 6(1–2):63–79. doi:10.1007/BF00232477 Google Scholar
  5. Donlon CJ, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W (2012) The operational sea surface temperature and sea ice analysis (ostia) system. Remote Sens Environ 116:140–158. doi:10.1016/j.rse.2010.10.017 CrossRefGoogle Scholar
  6. Doran J, Gryning SE (1987) Wind and temperature structure over a land–water–land area. J Appl Meteorol 26:973–979. doi:10.1175/1520-0450(1987)026<0973:WATSOA>2.0.CO;2
  7. Dörenkämper M, Tambke J, Steinfeld G, Heinemann D, Kühn M (2014) Atmospheric impacts on power curves of multi-megawatt offshore wind turbines. J Phys 555:012029. doi:10.1088/1742-6596/555/1/012029
  8. Draxl C, Hahmann AN, Peña A, Giebel G (2014) Evaluating winds and vertical wind shear from weather research and forecasting model forecasts using seven planetary boundary layer schemes. Wind Energy 17:39–55. doi:10.1002/we.1555 CrossRefGoogle Scholar
  9. Emeis S (2010) A simple analytical wind park model considering atmospheric stability. Wind Energy 13(5):459–469. doi:10.1002/we.367 CrossRefGoogle Scholar
  10. EWEA (2013) Deep water—the next step for offshore wind energy. Technical Report. European Wind Energy Association, Brussels, 51 ppGoogle Scholar
  11. EWEA (2014) The european offshore wind industry—key trends and statistics 2013. Technical Report. European Wind Energy Association, Brussels, 22 ppGoogle Scholar
  12. FINO2 (2007) FINO2 measurement platform—installation protocol. Technical Report. Wind Consult, 152 ppGoogle Scholar
  13. Foreman RJ, Emeis S (2012) A method for increasing the turbulent kinetic energy in the Mellor–Yamada–Janjić boundary-layer parametrization. Boundary-Layer Meteorol. 145(2):329–349 doi:10.1007/s10546-012-9227-4
  14. Foreman RJ, Emeis S, Canadillas B (2015) Half-order stable boundary-layer parametrization without the eddy viscosity approach for use in numerical weather prediction. Boundary-Layer Meteorol. 154(2):207–228 doi:10.1007/s10546-014-9969-4
  15. Grisogono B, Tjernström M (1996) Thermal mesoscale circulations on the Baltic coast: 2. Perturbation of surface parameters. J Geophys Res 101(D14):18999–19012. doi:10.1029/96JD01207 CrossRefGoogle Scholar
  16. GWEC (2013) Global wind report, annual market update 2013. Technical Report. Global Wind Energy Council, Brussels, 80 ppGoogle Scholar
  17. Hansen KS, Barthelmie RJ, Jensen LE, Sommer A (2012) The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energy 15:183–196. doi:10.1002/we.512 CrossRefGoogle Scholar
  18. Hasager CB, Badger M, Peña A, Larsén XG, Bingöl F (2011) SAR-based wind resource statistics in the Baltic Sea. Remote Sens 3(1):117–144. doi:10.3390/rs3010117 CrossRefGoogle Scholar
  19. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341. doi:10.1175/MWR3199.1 CrossRefGoogle Scholar
  20. Lange B, Larsen S, Højstrup J, Barthelmie R (2004) Importance of thermal effects and sea surface roughness for offshore wind resource assessment. J Wind Eng Ind Aerodyn 92(11):959–988. doi:10.1016/j.jweia.2004.05.005 CrossRefGoogle Scholar
  21. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20(4):851–875. doi:10.1029/RG020i004p00851 CrossRefGoogle Scholar
  22. Nakanishi M, Niino H (2004) An improved Mellor–Yamada level-3 model with condensation physics: its design and verification. Boundary-Layer Meteorol 112:1–31. doi:10.1023/B:BOUN.0000020164.04146.98
  23. NCEP (2011) NCEP climate forecast system version 2 (CFSv2) selected hourly time-series products. Technical Report. Environmental Modeling Center/National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder (updated monthly). http://rda.ucar.edu/datasets/ds094.1/
  24. Peña A, Hahmann A, Hasager C, Bingöl F, Karagali I, Badger J, Badger M, Clausen N (2011) South Baltic wind atlas. Technical Report. Ris-R-1775(EN), Technical University of Denmark, 66 ppGoogle Scholar
  25. Pleim JE (2007) A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J Appl Meteorol Clim 46(9):1383–1395. doi:10.1175/JAM2534.1 CrossRefGoogle Scholar
  26. Pryor S, Barthelmie R (1998) Analysis of the effect of the coastal discontinuity on near-surface flow. Ann Geophys 16(7):882–888. doi:10.1007/s00585-998-0882-3 CrossRefGoogle Scholar
  27. Sathe A, Gryning SE, Peña A (2011) Comparison of the atmospheric stability and wind profiles at two wind farm sites over a long marine fetch in the North Sea. Wind Energy 14(6):767–780. doi:10.1002/we.456 CrossRefGoogle Scholar
  28. Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang X, Wang W, Powers J (2008) A description of the advanced research WRF version 3. Technical Report. NCAR/TN475+STR, NCAR—National Center for Atmospheric Research, Boulder, 125 pp. doi:10.5065/D68S4MVH
  29. Smedman AS (1991) Occurrence of roll circulations in a shallow boundary layer. Boundary-Layer Meteorol 57(4):343–358. doi:10.1007/BF00120053 CrossRefGoogle Scholar
  30. Smedman AS, Högström U, Bergström H (1996) Low level jets—a decisive factor for off-shore wind energy siting in the Baltic Sea. Wind Eng 20(3):137–147Google Scholar
  31. Smedman AS, Bergström H, Grisogono B (1997) Evolution of stable internal boundary layers over a cold sea. J Geophys Res 102(C1):1091–1099. doi:10.1029/96JC02782 CrossRefGoogle Scholar
  32. Tjernström M, Grisogono B (1996) Thermal mesoscale circulations on the Baltic coast: 1. Numerical case study. J Geophys Res 101(D14):18979–18997. doi:10.1029/96JD01201 CrossRefGoogle Scholar
  33. Tjernström M, Smedman AS (1993) The vertical turbulence structure of the coastal marine atmospheric boundary layer. J Geophys Res 98(C3):4809–4826. doi:10.1029/92JC02610 CrossRefGoogle Scholar
  34. Vincent CL, Larsén XG, Larsen SE, Sørensen P (2013) Cross-spectra over the sea from observations and mesoscale modelling. Boundary-Layer Meteorol 146:297–318. doi:10.1007/s10546-012-9754-1

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Martin Dörenkämper
    • 1
  • Michael Optis
    • 2
  • Adam Monahan
    • 2
  • Gerald Steinfeld
    • 1
  1. 1.ForWind - Center for Wind Energy Research, Institute of PhysicsCarl von Ossietzky University OldenburgOldenburgGermany
  2. 2.School of Earth and Ocean SciencesUniversity of VictoriaVictoriaCanada

Personalised recommendations