Boundary-Layer Meteorology

, Volume 155, Issue 3, pp 515–526 | Cite as

Reconciling Discrepancies Between Airborne and Buoy-Based Measurements of Wind Stress Over Mixed Seas

  • Héctor García-Nava
  • Francisco J. Ocampo-Torres
  • Paul A. Hwang
Notes and Comments


In a previous study it was found that airborne and buoy-based measurements of wind stress made in the Gulf of Tehuantepc, México failed to agree. Here we revisit the issue and analyze data from both platforms in the context of flux-sampling strategies and find that there is now good agreement between wind-stress estimates from both experiments. The sampling strategies used for airborne and buoy-based sampling capture most of the contributing scales to the momentum flux and, correspondingly, the systematic errors for both stress estimates are low. On the other hand, the random error is much larger for the airborne measurements as compared with that for the buoy-based estimates. Increasing the averaging period for the aircraft-based estimates reduces the random error and brings the stress estimates into a better agreement with those from the buoy data. Since there is a good agreement between stress estimates, the apparent underestimation found earlier seems to be coincidental and caused by the interpolation method employed by the source paper.


Airborne measurements Eddy covariance Sampling errors Wind stress 



We thank Margaret A. LeMone and three other anonymous reviewers whose suggestions and comments reshaped and enriched this work. GOTEX data were provided by NCAR/EOL under sponsorship of the National Science Foundation. GOTEX was a collaborative effort of groups from Scripps Institution of Oceanography (UCSD), UC Irvine, NASA/EG&G, NCAR and the Universidad Autónoma de México (UNAM), led by W. Kendall Melville and Carl A. Friehe. The research was partially sponsored by PROMEP (Project UABC-10160), CONACYT (Project 155793, RugDiSMar) and the Office of Naval Research (NRL contribution: NRL/JA/7260-14-0051).

Supplementary material

10546_2015_7_MOESM1_ESM.pdf (54 kb)
Supplementary material 1 (pdf 53 KB)


  1. Brooks IM (2001) Air–sea Interaction and Spatial variability of the surface evaporation duct in a coastal environment. Geophys Res Lett 28(10):2009–2012CrossRefGoogle Scholar
  2. Brown EN, Friehe CA, Lenschow DH (1983) The use of pressure fluctuations on the nose of an aircraft for measuring air motion. J Appl Meteorol Clim 22(1):171–180CrossRefGoogle Scholar
  3. Donelan MA (1990) Air–sea interaction. In: LeMehaute B, Hanes DM (eds) The sea, ocean engineering science, vol 9. Wiley, London, pp 239–292Google Scholar
  4. Drennan WM, Graber HC, Hauser D, Quentin C (2003) On the wave age dependence of wind stress over pure wind seas. J Geophys Res 108(C3):8062CrossRefGoogle Scholar
  5. Friehe CA, Shaw WJ, Rogers DP, Davidson KL, Large WG, Stage SA, Crescenti GH, Khalsa SJ, Greenhut GK, Li F (1991) Air–sea fluxes and surface layer turbulence around a sea temperature front. J Geophys Res 96(C5):8593–8609CrossRefGoogle Scholar
  6. García-Nava H, Ocampo-Torres FJ, Osuna P, Donelan MA (2009) Wind stress in the presence of swell under moderate to strong wind conditions. J Geophys Res 114:C12008CrossRefGoogle Scholar
  7. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, p 316Google Scholar
  8. Graber HC, Terray EA, Donelan MA, Drennan WM, Leer JCV, Peters DB (2000) ASIS—a new air–sea interaction spar buoy: design and performance at sea. J Atmos Ocean Technol 17(5):708–720CrossRefGoogle Scholar
  9. Hennemuth B, Lammert A (2006) Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Boundary-Layer Meteorol 120:181–200CrossRefGoogle Scholar
  10. Hwang PA, García-Nava H, Ocampo-Torres FJ (2011) Observations of wind wave development in mixed seas and unsteady wind forcing. J Phys Oceanogr 41(12):2343–2362CrossRefGoogle Scholar
  11. Kaimal JC, Wyngaard JC, Izumi Y, Coté R (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98:563–589CrossRefGoogle Scholar
  12. Khelif GD, Burns SP, Friehe CA (1999) Improved wind measurements on research aircraft. J Atmos Ocean Technol 16:860–875CrossRefGoogle Scholar
  13. Kundu PK (1990) Fluid mechanics. Academic Press, London, p 638Google Scholar
  14. LeMone MA, Pennell WT (1980) A comparison of turbulence measurements from aircraft. J Appl Meteorol 19:1420–1437CrossRefGoogle Scholar
  15. Lenschow DH, Mann J, Kristensen L (1994) How long is long enogh when measuring fluxes and other turbulence statistics? J Atmos Ocean Technol 11:661–673CrossRefGoogle Scholar
  16. Lenschow DH, Miller ER, Friesen RB (1991) A three-aircraft intercomparison of two types of air motion measurement systems. J Atmos Ocean Technol 8:41–50CrossRefGoogle Scholar
  17. Mahrt L (1998) Flux sampling errors for aircraft and towers. J Atmos Ocean Technol 15(4):416–429CrossRefGoogle Scholar
  18. Miyake M, Donelan MA, Mitsuta Y (1970) Airborne measurement of turbulent fluxes. J Geophys Res 75(24):4506–4518CrossRefGoogle Scholar
  19. Nicholls S, Shaw W, Hauf T (1983) An intercomparison of aircraft measurements made during JASIN. J Appl Meteorol Clim 22:1637–1648CrossRefGoogle Scholar
  20. Ocampo-Torres FJ, García-Nava H, Durazo R, Osuna P, Méndez GM, Graber HC (2011) The IntOA experiment: a study of ocean–atmosphere interactions under moderate to strong offshore winds and opposing swell conditions in the Gulf of Tehuantepec, México. Boundary-Layer Meteorol 138:433–451CrossRefGoogle Scholar
  21. Oost WA, Komen GJ, Jacobs CMJ, van Oort C, Bonekamp H (2001) Indications for a wave dependent Charnock parameter from measurements during ASGAMAGE. Geophys Res Lett 28(14):2795–2797CrossRefGoogle Scholar
  22. Panofsky HA, Dutton JA (1984) Atmospheric turbulence. Wiley Interscience, Hoboken, p 397Google Scholar
  23. Romero L, Melville WK (2010) Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J Phys Oceanogr 40(3):441–465CrossRefGoogle Scholar
  24. Romero-Centeno R, Zavala-Hidalgo J, Gallegos A, O’Brien JJ (2003) Isthmus of Tehuantepec wind climatology and ENSO signal. J Clim 16:2628–2639CrossRefGoogle Scholar
  25. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526CrossRefGoogle Scholar
  26. Vickers D, Mahrt L, Andreas EL (2013) Estimates of the 10-m neutral sea surface drag coefficient from aircraft Eddy-covariance measurements. J Phys Oceanogr 43:301–310CrossRefGoogle Scholar
  27. Yelland M, Taylor PK (1996) Wind stress measurements from the open ocean. J Phys Oceanogr 26:541–555CrossRefGoogle Scholar
  28. Zulueta R, Oechel WC, Verfaillie JG, Hastings SJ, Gioli B, Lawrence WT (2013) Aircraft regional-scale flux measurements over complex landscapes of mangroves, desert, and marine ecosystems of Magdalena Bay, México. J Atmos Ocean Technol 30:1266–1294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Héctor García-Nava
    • 1
  • Francisco J. Ocampo-Torres
    • 2
  • Paul A. Hwang
    • 3
  1. 1.Instituto de Investigaciones OceanológicasUniversidad Autónoma de Baja CaliforniaEnsenadaMexico
  2. 2.Departamento de Oceanografía FísicaCentro de Investigación Científica y de Educación Superior de Ensenada B.C.EnsenadaMexico
  3. 3.Remote Sensing DivisionNaval Research LaboratoryWashingtonUSA

Personalised recommendations