Boundary-Layer Meteorology

, Volume 154, Issue 3, pp 497–512 | Cite as

Vertical Energy and Momentum Fluxes in the Centre of Athens, Greece During a Heatwave Period (Thermopolis 2009 Campaign)

  • S. RapsomanikisEmail author
  • A. Trepekli
  • G. Loupa
  • C. Polyzou


The atmospheric energy budget in the centre of Athens, Greece was determined during the Thermopolis 2009 campaign in order to investigate the development of the urban heat island. Heatwaves during summer are a common occurrence in this large conurbation. Micrometeorological data from a tower were acquired in a densely built central district, and net all-wave radiation, sensible heat, latent heat and momentum flux densities were derived by the eddy-covariance method and also estimated using Monin–Obukhov similarity relationships. Under the prevailing hot and dry conditions, sensible heat-flux density was on average five times larger than the latent heat-flux density. The anthropogenic contribution to the energy budget was also determined on the basis of the acquired data.


Aerodynamic roughness length Anthropogenic contributions Eddy covariance Energy budget Monin–Obukhov similarity theory Urban heat island 



The present work was conducted in the frame of the “Urban Heat Islands and Urban Thermography” project, funded by the European Space Agency (ESA) (Contract No. 21913/08/I-LG). Observational data used in the present study were acquired during the Thermopolis 2009 campaign, funded by ESA (Contract No. 22693/09/I-EC). We also greatly acknowledge the help of two anonymous referees who helped improve the manuscript.


  1. Allen L, Lindberg F, Grimmond CSB (2011) Global to city scale urban anthropogenic heat flux: model and variability. Int J Climatol 31(13):1990–2005CrossRefGoogle Scholar
  2. Allwine KJ, Leach MJ, Stockham LW, Shinn JS, Hosker RP, Bowers JF, Pace JC (2004) Overview of Joint Urban 2003 - an atmospheric dispersion study in Oklahoma City. In: Symposium on planning, nowcasting, and forecasting in the urban zone. American Meteorological Society, Seattle. Preprints, CD-ROM, J7.1Google Scholar
  3. Allwine KJ, Shinn JH, Streit GE, Clawson KL, Brown M (2002) Overview of URBAN 2000: a multiscale field study of dispersion through an urban environment. Bull Am Meteorol Soc 83(4):521–536CrossRefGoogle Scholar
  4. Aoyagi T, Kayaba N, Seino N (2012) Numerical simulation of the surface air temperature change caused by increases of urban area, anthropogenic heat, and building aspect ratio in the Kanto-Koshin area. J Meteorol Soc Jpn 90(B):11–31CrossRefGoogle Scholar
  5. Bohnenstengel SI, Hamilton I, Davies M, Belcher SE (2014) Impact of anthropogenic heat emissions on London’s temperatures. Q J R Meteorol Soc 140(679):687–698CrossRefGoogle Scholar
  6. Brutsaert W (1982) Evaporation into the atmosphere: theory, history and applications. D. Reidel, DordrechtCrossRefGoogle Scholar
  7. Brutsaert W (1998) Land-surface water vapor and sensible heat-flux: spatial variability, homogeneity, and measurement scales. Water Resour Res 34(10):2433–2442CrossRefGoogle Scholar
  8. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28(2):181–189CrossRefGoogle Scholar
  9. Christen A, Vogt R (2004) Energy and radiation balance of a central European city. Int J Climatol 24(11):1395–1421CrossRefGoogle Scholar
  10. Christen A, Bernhofer C, Parlow E, Rotach MW, Vogt R (2003) Partitioning of turbulent fluxes over different urban surfaces. In: Proceedings of 5th international conference for urban climate, Łódź, Poland, 1–5 September, pp 285–288Google Scholar
  11. Crutzen P (2004) New directions: the growing urban heat and pollution “island” effect—impact on chemistry and climate. Atmos Environ 38(21):3539–3540CrossRefGoogle Scholar
  12. Daglis IA, Rapsomanikis S, Kourtidis K, Melas D, Papayannis A, Keramitsoglou I, Giannaros T, Amiridis V, Petropoulos G, Georgoulias A, Sobrino JA, Manunta P, Gröbner J, Paganini M, Bianchi R (2010a) Mapping the Urban Heat Island (UHI) effect In Athens: results Obtained from the UHI and Thermopolis 2009 Projects. In: Proceedings of EGU, at Vienna, Austria, pp 05-2010Google Scholar
  13. Daglis IA, Rapsomanikis S, Kourtidis K, Melas D, Papayannis A, Keramitsoglou I, Giannaros T, Amiridis V, Petropoulos G, Georgoulias A, Sobrino JA, Manunta P, Gröbner J, Paganini M, Bianchi R (2010b) In: Proceedings of the ‘ESA living planet symposium’, Bergen, Norway 28 June–2 July 2010 (ESA SP-686, December 2010)Google Scholar
  14. Demuzere M, De Ridder K, Van Lipzig NPM (2008) Modeling the energy balance in Marseille: sensitivity to roughness length parameterizations and thermal admittance. J Geophys Res D 113(D16120):1–19Google Scholar
  15. Doran JC, Berkowitz CM, Coulter RL, Shaw WJ, Spicer CW (2003) The 2001 Phoenix Sunrise experiment: vertical mixing and chemistry during the morning transition in Phoenix. Atmos Environ 37:2365–2377CrossRefGoogle Scholar
  16. Eurostat (2004) Urban Audit. Methodological handbook, Theme 1. General Statistics. Office for Official Publications of the European Communities, Luxembourg, p 88Google Scholar
  17. Ficher B, Joffre S, Kukkonen J, Piringer M, Rotach MW, Schatzmann M (eds) (2005) Meteorology applied to urban air pollution problems. Final report of COST-715 Action. ISBN 954-9526-30-5. Demetra Ltd Publishers, Sofia, 243 ppGoogle Scholar
  18. Foken T (2008) Micrometeorology. Springer, Heidelberg, 320 ppGoogle Scholar
  19. Giannaros TM, Melas D, Daglis IA, Keramitsoglou I, Kourtidis K (2013) Numerical study of the urban heat island over Athens (Greece) with the WRF model. Atmos Environ 73:103–111CrossRefGoogle Scholar
  20. Graf A, Boer A, Moene A, Vereecken H (2014) Intercomparison of methods for the simultaneous estimation of zero-plane displacement and aerodynamic roughness length from single-level eddy-covariance data. Boundary-Layer Meteorol 151(2):373–387CrossRefGoogle Scholar
  21. Grimmond CSB, Oke TR (1999a) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38(9):1262–1292CrossRefGoogle Scholar
  22. Grimmond CSB, Oke TR (1999b) Heat storage in urban areas: local-scale observations and evaluation of a simple model. J Appl Meteorol 38(7):922–940CrossRefGoogle Scholar
  23. Grimmond CSB, Oke TR (2002) Turbulent heat-fluxes in urban areas: observations and a local-scale urban meteorological parameterization scheme (LUMPS). J Appl Meteorol 41(7):792–810CrossRefGoogle Scholar
  24. Grimmond CSB, Cleugh HA, Oke TR (1991) An objective urban heat storage model and its comparison with other schemes. Atmos Environ Part B 25(3):311–326CrossRefGoogle Scholar
  25. Grimmond CSB, King TS, Roth M, Oke TR (1998) Aerodynamic roughness of urban areas derived from wind observations. Boundary-Layer Meteorol 89(1):1–24CrossRefGoogle Scholar
  26. Grimmond CSB, Salmond JA, Oke TR, Offerle B, Lemonsu A (2004) Flux and turbulence measurements at a densely built-up site in Marseille: heat, mass (water and carbon dioxide), and momentum. J Geophys Res 109:D24101Google Scholar
  27. Harrison RM, Rapsomanikis S, Turnbull A (1989) A land-surface exchange in a chemically-reactive system; surface fluxes of \(\text{ HNO }_{3}\), HCl and \(\text{ NH }_{3}\). Atmos Environ 23:1795–1980CrossRefGoogle Scholar
  28. Højstrup J (1993) A statistical data screening procedure. Meas Sci Technol 4(2):153–157CrossRefGoogle Scholar
  29. Kormann R, Meixner F (2001) An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol 99(2):207–224CrossRefGoogle Scholar
  30. Lee SH, Song CK, Baik JJ, Park SU (2009) Estimation of anthropogenic heat emission in the Gyeong-In region of Korea. Theor Appl Climatol 96(3–4):291–303CrossRefGoogle Scholar
  31. Li D, Bou-Zeid E, De Bruin HR (2012) Monin–Obukhov similarity functions for the structure parameters of temperature and humidity. Boundary-Layer Meteorol 145(1):45–67CrossRefGoogle Scholar
  32. Martano P (2000) Estimation of surface roughness length and displacement height from single-level sonic anemometer data. J Appl Meteorol 39(5):708–715CrossRefGoogle Scholar
  33. Masson V, Grimmond CSB, Oke TR (2002) Evaluation of the town energy balance (TEB) scheme with direct measurements from dry districts in two cities. J Appl Meteorol 41(10):1011–1026CrossRefGoogle Scholar
  34. Masson V, Gomes L, Pigeon G, Liousse C, Pont V, Lagouarde JP, Voogt J, Salmond J, Oke TR, Hidalgo J, Legain D, Garrouste O, Lac C, Connan O, Briottet X, Lachérade S, Tulet P (2008) The Canopy and Aerosol Particles Interactions in TOulouse Urban Layer (CAPITOUL) experiment. Meteorol Atmos Phys 102(3):135–157CrossRefGoogle Scholar
  35. Mestayer PG, Durand P, Augustin P, Bastin S, Bonnefond JM, Bénech B, Campistron B, Coppalle A, Delbarre H, Dousset B, Drobinski P, Druilhet A, Fréjafon E, Grimmond CSB, Groleau D, Irvine M, Kergomard C, Kermadi S, Lagouarde JP, Lemonsu A, Lohou F, Long N, Masson V, Moppert C, Noilhan J, Offerle B, Oke TR, Pigeon G, Puygrenier V, Roberts S, Rosant JM, Sanïd F, Salmond J, Talbaut M, Voogt J (2005) The urban boundary-layer field campaign in Marseille (UBL/CLU-ESCOMPTE): set-up and first results. Boundary-Layer Meteorol 114(2):315–365CrossRefGoogle Scholar
  36. Moncrieff J, Clement R, Finnigan J, Meyers T (2005) Averaging, detrending, and filtering of eddy covariance time series. Handbook of micrometeorology: a guide for surface flux measurement and analysis. Springer, Dordrecht, 265 ppGoogle Scholar
  37. Monin A, Obukhov A (1954) Osnovnye zakonomernosti turbulentnogo peremesivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy Geofiz Inst AN SSSR 24(151):163–187Google Scholar
  38. Moriwaki R, Kanda M (2004) Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J Appl Meteorol 43(11):1700–1710CrossRefGoogle Scholar
  39. Moriwaki R, Kanda M (2006) Flux–gradient profiles for momentum and heat over an urban surface. Theor Appl Climatol 84(1):127–135CrossRefGoogle Scholar
  40. Narumi D, Kondo A, Shimoda Y (2009) Effects of anthropogenic heat release upon the urban climate in a Japanese megacity. Environ Res 109(4):421–431CrossRefGoogle Scholar
  41. Neftel A, Spirig C, Ammann C (2008) Application and test of a simple tool for operational footprint evaluations. Environ Pollut 152(3):644–652CrossRefGoogle Scholar
  42. Nordbo A, Järvi L, Haapanala S, Moilanen J, Vesala T (2013) Intra-city variation in urban morphology and turbulence structure in Helsinki, Finland. Boundary-Layer Meteorol 146(3):469–496CrossRefGoogle Scholar
  43. Offerle B, Grimmond CSB, Fortuniak K (2005) Heat storage and anthropogenic heat-flux in relation to the energy balance of a central European city centre. Int J Climatol 25(10):1405–1419CrossRefGoogle Scholar
  44. Offerle B et al (2006a) Temporal variations in heat-fluxes over a central European city centre. Theor Appl Climatol 84(1–3):103–115CrossRefGoogle Scholar
  45. Offerle B et al (2006b) Intraurban differences of surface energy fluxes in a central European City. J Appl Meteorol 45(1):125–136CrossRefGoogle Scholar
  46. Oke TR (1988) The urban energy balance. Prog Phys Geogr 12:471–508CrossRefGoogle Scholar
  47. Oke TR (2006) Instruments and observing methods: Report No. 81: initial guidance to obtain representative meteorological observations at urban sites. World Meteorological Organization, WMO/TD(1250), 51 ppGoogle Scholar
  48. Oke TR, Spronken-Smith RA, Jáuregui E, Grimmond CSB (1999) The energy balance of central Mexico City during the dry season. Atmos Environ 33(24–25):3919–3930CrossRefGoogle Scholar
  49. Pigeon G, Legain D, Durand P, Masson V (2007) Anthropogenic heat release in an old European agglomeration (Toulouse, France). Int J Climatol 27(14):1969–1981CrossRefGoogle Scholar
  50. Piringer M, Grimmond CSB, Joffre SM, Mestayer P, Middleton DR, Rotach MW, Baklanov A, De Ridder K, Ferreira J, Guilloteau E, Karppinen A, Martilli A, Masson V, Tombrou M (2002) Investigating the surface energy balance in urban areas—recent advances and future needs. Water Air Soil Pollut 2(5):1–16CrossRefGoogle Scholar
  51. Rooney GG (2001) Comparison of upwind land use and roughness length measured in the urban boundary layer. Boundary-Layer Meteorol 100(3):469–485CrossRefGoogle Scholar
  52. Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Feddersen B, Gryning SE, Martucci G, Mayer H, Mitev V, Oke TR, Parlow E, Richner H, Roth M, Roulet YA, Ruffieux D, Salmond JA, Schatzmann M, Voogt JA (2005) BUBBLE—an Urban Boundary Layer Meteorology Project. Theor Appl Climatol 81(3):231–261CrossRefGoogle Scholar
  53. Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126(564):941–990CrossRefGoogle Scholar
  54. Sailor DJ (2011) A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int J Climatol 31(2):189–199CrossRefGoogle Scholar
  55. Sailor DJ, Lu L (2004) A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos Environ 38(17):2737–2748CrossRefGoogle Scholar
  56. Schmid HP (2002) Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agric For Meteorol 113(1):159–183CrossRefGoogle Scholar
  57. Schmid HP, Oke TR (1990) A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain. Q J R Meteorol Soc 116(494):965–988CrossRefGoogle Scholar
  58. Schotanus P, Nieuwstadt FTM, de Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol 26(1):81–93CrossRefGoogle Scholar
  59. Takashi A, Shinji Y, Akira H (2009) Prediction of sensible heat-flux from buildings and urban spaces using a detailed geometry model of a substantial urban area—introduction of a prediction model of anthropogenic heat into an urban heat balance simulation model into an urban heat balance simulation. In: The seventh international conference on urban climate, 29 June–3 July 2009, Yokohama, JapanGoogle Scholar
  60. Velasco E, Pressley S, Grivicke R, Allwine E, Molina L, Lamb B (2011) Energy balance in urban Mexico City: observation and parameterization during the MILAGRO/MCMA-2006 field campaign. Theor Appl Climatol 103(3–4):501–517CrossRefGoogle Scholar
  61. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Technol 14(3):512–526CrossRefGoogle Scholar
  62. Wilczak J, Oncley S, Stage S (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150CrossRefGoogle Scholar
  63. Wolf A, Laca EA (2007) Cospectral analysis of high frequency signal loss in eddy covariance measurements. Atmos Chem Phys Discuss 7:13151–13173CrossRefGoogle Scholar
  64. Ziomas IC (1998) The mediterranean campaign of photochemical tracers—transport and chemical evolution (MEDCAPHOT-TRACE): an outline. Atmos Environ 32(12):2045–2053CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • S. Rapsomanikis
    • 1
    Email author
  • A. Trepekli
    • 1
  • G. Loupa
    • 1
  • C. Polyzou
    • 1
  1. 1.Laboratory of Atmospheric Pollution and of Control Engineering of Atmospheric Pollutants, Department of Environmental Engineering, Faculty of EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations