Boundary-Layer Meteorology

, Volume 153, Issue 1, pp 1–17 | Cite as

A Boundary-Layer Scaling for Turbulent Katabatic Flow



Scaling relationships are proposed for the turbulent katabatic flow of a stably stratified fluid down a homogeneously cooled planar slope—the turbulent analogue of a Prandtl-type slope flow. The \(\Pi \) Theorem predicts that such flows are controlled by three non-dimensional parameters: the slope angle, the Prandtl number, and a Reynolds number defined in terms of the surface thermal forcing (surface buoyancy or surface buoyancy flux), Brunt-Väisälä frequency, slope angle, and molecular viscosity and diffusivity coefficients. However, by exploiting the structure of the governing differential equations in a boundary-layer form, scaled equations are deduced that involve only two non-dimensional parameters: the Prandtl number and a modified Reynolds number. In the proposed scaling framework, the slope angle does not appear as an independent governing parameter, but merely acts as a stretching factor in the scales for the dependent and independent variables, and appears in the Reynolds number. Based on the boundary-layer analysis, we hypothesize that the full katabatic-flow problem is largely controlled by two rather than three parameters. Preliminary tests of the scaling hypothesis using data from direct numerical simulations provide encouraging results.


Direct numerical simulation Katabatic flow Planar slope Stable stratification Turbulence 


  1. Adolphs U, Wendler G (1995) A pilot study on the interactions between katabatic winds and polynyas at the Adélie Coast, eastern Antarctica. Antarct Sci 7:307–314CrossRefGoogle Scholar
  2. Atkinson BW (1981) Meso-scale atmospheric circulations. Academic Press, London, 495 ppGoogle Scholar
  3. Axelsen SL, Dop H (2009a) Large-eddy simulation of katabatic winds. Part 1: comparison with observations. Acta Geophys 57:803–836Google Scholar
  4. Axelsen SL, van Dop H (2009b) Large-eddy simulation of katabatic winds. Part 2: sensitivity study and comparison with analytical models. Acta Geophys 57:837–856Google Scholar
  5. Barthélemy A, Hugues G, Mathiot P, Fichefet T (2012) Inclusion of a katabatic wind correction in a coarse-resolution global coupled climate model. Ocean Model 48:45–54Google Scholar
  6. Bastin S, Drobinski P (2005) Temperature and wind velocity oscillations along a gentle slope during sea-breeze events. Boundary-Layer Meteorol 114:573–594CrossRefGoogle Scholar
  7. Bejan A (2013) Convection heat transfer. Wiley, Hoboken, 696 ppGoogle Scholar
  8. Brazel AJ, Fernando HJS, Hunt JCR, Selover N, Hedquist BC, Pardyjak E (2005) Evening transition observations in Phoenix, Arizona. J Appl Meteorol 44:99–112CrossRefGoogle Scholar
  9. Bromwich DH, Kurtz DD (1984) Katabatic wind forcing of the Terra Nova Bay polynya. J Geophys Res 89:3561–3572CrossRefGoogle Scholar
  10. Bromwich DH (1989) Satellite analyses of Antarctic katabatic wind behavior. Bull Am Meteorol Soc 70:738–749CrossRefGoogle Scholar
  11. Bromwich D, Liu Z, Rogers AN, Van Woert ML (1998) Winter atmospheric forcing of the Ross Sea polynya. In: Jacobs SS, Weiss RF (eds) Ocean, ice, and atmosphere: interactions at the Antarctic continental margin, Antarctic research series, vol 75. American Geophysical Union, Washington, pp 101–133Google Scholar
  12. Burkholder B, Fedorovich E, Shapiro A (2011) Evaluating sub-grid scale models for large-eddy simulation of turbulent katabatic flow. Quality and reliability of large-eddy simulations II. Springer, Dordrecht, pp 149–160Google Scholar
  13. Chemel C, Staquet C, Largeron Y (2009) Generation of internal gravity waves by a katabatic wind in an idealized alpine valley. Meteorol Atmos Phys 103:187–194CrossRefGoogle Scholar
  14. Clements WE, Archuleta JA, Hoard DE (1989) Mean structure of the nocturnal drainage flow in a deep valley. J Appl Meteorol 28:457–462CrossRefGoogle Scholar
  15. Cotton JH, Michael KJ (1994) The monitoring of katabatic wind-coastal polynya interaction using AVHRR imagery. Antarct Sci 6:537–540CrossRefGoogle Scholar
  16. Defant F (1949) Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch Meteorol Geophys Bioklim Ser A 1:421–450CrossRefGoogle Scholar
  17. Egger J (1990) Thermally forced flows: theory. In: Blumen W (ed) Atmospheric processes over complex terrain, vol 45. Meteorological Monographs. American Meteorological Society, Boston, pp 43–58Google Scholar
  18. Fedorovich E, Shapiro A (2009a) Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophys 57:981–1010CrossRefGoogle Scholar
  19. Fedorovich E, Shapiro A (2009b) Turbulent natural convection along a vertical plate immersed in a stably stratified fluid. J Fluid Mech 636:41–57CrossRefGoogle Scholar
  20. Fernando HJS (2010) Fluid dynamics of urban atmospheres in complex terrain. Annu Rev Fluid Mech 42:365–389CrossRefGoogle Scholar
  21. Fernando HJS, Lee SM, Anderson J, Princevac M, Pardyjak E, Grossman-Clarke S (2001) Urban fluid mechanics: air circulation and contaminant dispersion in cities. Environ Fluid Mech 1:107–164CrossRefGoogle Scholar
  22. Gallee H, Schayes G (1994) Development of a 3-dimensional meso-\(\gamma \) primitive equation model: katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon Weather Rev 122:671–685CrossRefGoogle Scholar
  23. Godeferd FS, Staquet C (2003) Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 2. Large-scale and small-scale anisotropy. J Fluid Mech 486:115–159CrossRefGoogle Scholar
  24. Grisogono B, Oerlemans J (2001) Katabatic flow: analytic solution for gradually varying eddy diffusivities. J Atmos Sci 58:3349–3354CrossRefGoogle Scholar
  25. Grisogono B, Oerlemans J (2002) Justifying the WKB approximation in pure katabatic flows. Tellus 54A:453–462CrossRefGoogle Scholar
  26. Grisogono B, Axelsen SL (2012) A note on the pure katabatic wind maximum over gentle slopes. Boundary-Layer Meteorol 145:527–538CrossRefGoogle Scholar
  27. Heinemann G, Klein T (2002) Modelling and observations of the katabatic flow dynamics over Greenland. Tellus 54A:542–554CrossRefGoogle Scholar
  28. Hootman BW, Blumen W (1983) Analysis of nighttime drainage winds in Boulder, Colorado during 1980. Mon Weather Rev 111:1052–1061CrossRefGoogle Scholar
  29. Hopfinger EJ (1987) Turbulence in stratified fluids: a review. J Geophys Res 92:5287–5303CrossRefGoogle Scholar
  30. Hunt JCR, Fernando HJS, Princevac M (2003) Unsteady thermally driven flows on gentle slopes. J Atmos Sci 60:2169–2182CrossRefGoogle Scholar
  31. Jiménez MA, Cuxart J (2005) Large-eddy simulations of the stable boundary layer using the standard Kolmogorov theory: range of applicability. Boundary-Layer Meteorol 115:241–261CrossRefGoogle Scholar
  32. Kundu PK, Cohen IM (2002) Fluid mechanics, 2nd edn. Academic Press, San Diego, 730 ppGoogle Scholar
  33. Langhaar HL (1951) Dimensional analysis and theory of models. Wiley, New York, 166 ppGoogle Scholar
  34. Largeron Y, Staquet C, Chemel C (2013) Characterization of oscillatory motions in the stable atmosphere of a deep valley. Boundary-Layer Meteorol 148:439–454CrossRefGoogle Scholar
  35. Lee SM, Fernando HJS, Princevac M, Zajic D, Sinesi M, McCulley JL, Anderson J (2003) Transport and diffusion of ozone in the nocturnal and morning planetary boundary layer of the Phoenix valley. Environ Fluid Mech 3:331–362CrossRefGoogle Scholar
  36. Lindborg E (2006) The energy cascade in a strongly stratified fluid. J Fluid Mech 550:207–242CrossRefGoogle Scholar
  37. Lu R, Turco RP (1994) Air pollutant transport in a coastal environment. Part I: two-dimensional simulations of sea-breeze and mountain effects. J Atmos Sci 51:2285–2308CrossRefGoogle Scholar
  38. Mahrt L (1998) Stratified atmospheric boundary layers and breakdown of models. Theor Comput Fluid Dyn 11:263–279CrossRefGoogle Scholar
  39. Massom RA, Harris PT, Michael KJ, Potter MJ (1998) The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann Glaciol 27:420–426Google Scholar
  40. Mauritsen T, Svensson G, Zilitinkevich SS, Esau I, Enger L, Grisogono B (2007) A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J Atmos Sci 64:4113–4126CrossRefGoogle Scholar
  41. McNider RT (1982) A note on velocity fluctuations in drainage flows. J Atmos Sci 39:1658–1660CrossRefGoogle Scholar
  42. Mo R (2013) On adding thermodynamic damping mechanisms to refine two classical models of katabatic winds. J Atmos Sci 70:2325–2334CrossRefGoogle Scholar
  43. Noppel H, Fiedler F (2002) Mesoscale heat transport over complex terrain by slope winds: a conceptual model and numerical simulations. Boundary-Layer Meteorol 104:73–97CrossRefGoogle Scholar
  44. Oerlemans J (1998) The atmospheric boundary layer over melting glaciers. In: Holtslag AAM, Duynkerke PG (eds) Clear and cloudy boundary layers. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 129–153Google Scholar
  45. Oerlemans J, Grisogono B (2002) Glacier winds and parameterisation of the related surface heat fluxes. Tellus A 54:440–452CrossRefGoogle Scholar
  46. Ohshima KI, Fukamachi Y, Williams GD, Nihashi S, Roquet F, Kitade Y, Tamura T, Hirano D, Field I, Hindell MA, Aoki S, Wakatsuchi M (2013) Antarctic bottom water production by intense sea-ice formation in the Cape Darnley polynya. Nat Geosci 6:235–240CrossRefGoogle Scholar
  47. Papadopoulos KH, Helmis CG, Soilemes AT, Kalogiros J, Papageorgas PG, Asimakopoulos DN (1997) The structure of katabatic flows down a simple slope. Q J R Meteorol Soc 123:1581–1601CrossRefGoogle Scholar
  48. Parish TP, Waight KT (1987) The forcing of antarctic katabatic winds. Mon Weather Rev 115:2214–2226CrossRefGoogle Scholar
  49. Parish TP (1992) On the role of Antarctic katabatic winds in forcing large-scale tropospheric motions. J Atmos Sci 49:1374–1385CrossRefGoogle Scholar
  50. Parmhed O, Oerlemans J, Grisogono B (2004) Describing surface fluxes in katabatic flow on Breidamerkurjökull, Iceland. Q J R Meteorol Soc 130:1137–1151CrossRefGoogle Scholar
  51. Pettersson Reif BA, Andreassen Ø (2003) On local isotropy in stratified homogeneous turbulence. SIAM J Appl Math 64:309–321CrossRefGoogle Scholar
  52. Pope SB (2000) Turbulent flows. Cambridge University Press, UK, 771 ppGoogle Scholar
  53. Poulos G, Zhong S (2008) An observational history of small-scale katabatic winds in mid-latitudes. Geogr Compass 2:1798–1821CrossRefGoogle Scholar
  54. Princevac M, Hunt JCR, Fernando HJS (2008) Quasi-steady katabatic winds on slopes in wide valleys: hydraulic theory and observations. J Atmos Sci 65:627–643CrossRefGoogle Scholar
  55. Prandtl L (1942) Führer durch die Strömungslehre. Vieweg and Sohn, Braunschweig, 648 ppGoogle Scholar
  56. Raga GB, Baumgardner D, Kok G, Rosas I (1999) Some aspects of boundary layer evolution in Mexico City. Atmos Environ 33:5013–5021CrossRefGoogle Scholar
  57. Renfrew IA (2004) The dynamics of idealized katabatic flow over a moderate slope and ice shelf. Q J R Meteorol Soc 130:1023–1045CrossRefGoogle Scholar
  58. Renfrew IA, Anderson PS (2006) Profiles of katabatic flow in summer and winter over Coats Land, Antarctica. Q J R Meteorol Soc 132:779–802CrossRefGoogle Scholar
  59. Riley JJ, Lelong M-P (2000) Fluid motions in the presence of strong stable stratification. Annu Rev Fluid Mech 32:613–657CrossRefGoogle Scholar
  60. Schumann U (1990) Large-eddy simulation of the up-slope boundary layer. Q J R Meteorol Soc 116:637–670CrossRefGoogle Scholar
  61. Shapiro A, Fedorovich E (2007) Katabatic flow along a differentially-cooled sloping surface. J Fluid Mech 571:149–175CrossRefGoogle Scholar
  62. Shapiro A, Burkholder B, Fedorovich E (2012) Analytical and numerical investigation of two-dimensional katabatic flow resulting from local surface cooling. Boundary-Layer Meteorol 145:249–272CrossRefGoogle Scholar
  63. Smith CM, Porté-Agel F (2013) Comparison of subgrid models for large-eddy simulation of katabatic flows. Q J R Meteorol Soc. doi: 10.1002/qj.2212
  64. Smith CM, Skyllingstad ED (2005) Numerical simulation of katabatic flow with changing slope angle. Mon Weather Rev 133:3065–3080CrossRefGoogle Scholar
  65. Steyn DG, De Wekker SFJ, Kossmann M, Martilli A (2012) Boundary layers and air quality in mountainous terrain. In: Chow FK, De Wekker SFJ, Snyder BJ (eds) Mountain weather research and forecasting: recent progress and current challenges. Springer, Dordrecht, pp 261–289Google Scholar
  66. Thoroddsen ST, Van Atta CW (1992) The influence of stable stratification on small-scale anisotropy and dissipation in turbulence. J Geophys Res 97:3647–3658Google Scholar
  67. Thoroddsen ST, Van Atta CW (1996) Experiments on density-gradient anisotropies and scalar dissipation of turbulence in a stably stratified fluid. J Fluid Mech 322:383–409Google Scholar
  68. Tyson PD (1968) Velocity fluctuations in the mountain wind. J Atmos Sci 25:381–384CrossRefGoogle Scholar
  69. Van Woert ML (1999) Wintertime dynamics of the Terra Nova Bay polynya. J Geophys Res 104:7753–7769CrossRefGoogle Scholar
  70. Waite ML, Bartello P (2004) Stratified turbulence dominated by vortical motion. J Fluid Mech 517:281–308CrossRefGoogle Scholar
  71. Werne J, Fritts DC (2001) Anisotropy in a stratified shear layer. Phys Chem Earth (B) 26:263–268CrossRefGoogle Scholar
  72. Whiteman CD (1990) Observations of thermally developed wind systems in mountainous terrain. In: Blumen W (ed) Atmospheric processes over complex terrain, vol 45. Meteorological Monographs. American Meteorological Society, Boston, pp 5–42Google Scholar
  73. Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, New York, 355 ppGoogle Scholar
  74. Williams GD, Aoki S, Jacobs SS, Rintoul SR, Tamura T, Bindoff NL (2010) Antarctic Bottom Water from the Adélie and George V Land coast, East Antarctica (140–149\(^{\circ }\text{ E }\)). J Geophys Res 115:C04027. doi:  10.1029/2009JC005812 Google Scholar
  75. Wong ABD, Griffiths RW (1999) Stratification and convection produced by multiple turbulent plumes. Dyn Atmos Oceans 30:101–123CrossRefGoogle Scholar
  76. Zammett RJ, Fowler AC (2007) Katabatic winds on ice sheets: a refinement of the Prandtl model. J Atmos Sci 64:2707–2716CrossRefGoogle Scholar
  77. Zardi D, Whiteman CD (2012) Diurnal mountain wind systems. In: Chow FK, De Wekker SFJ, Snyder BJ (eds) Mountain weather research and forecasting: recent progress and current challenges. Springer, Dordrecht, pp 35–119Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of MeteorologyUniversity of OklahomaNormanUSA
  2. 2.Center for Analysis and Prediction of StormsUniversity of OklahomaNormanUSA

Personalised recommendations