Boundary-Layer Meteorology

, Volume 152, Issue 1, pp 65–89 | Cite as

Multi-Scale Sensible Heat Fluxes in the Suburban Environment from Large-Aperture Scintillometry and Eddy Covariance

  • H. C. Ward
  • J. G. Evans
  • C. S. B. Grimmond


Sensible heat fluxes (\(Q_{H}\)) are determined using scintillometry and eddy covariance over a suburban area. Two large-aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2–4 \(\text {km}^{2}\), whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5–10 \(\text {km}^{2}\). These large-scale heat fluxes are compared with local-scale eddy-covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly \(Q_{H}\) is related to the meteorological conditions. At shorter time scales the response of \(Q_{H}\) to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (\(Q^{*}\)) coincide with greater differences between heat fluxes. For clear days \(Q_{H}\) lags \(Q^{*}\), thus the ratio of \(Q_{H}\) to \(Q^{*}\) increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions.


Energy balance Large-aperture scintillometer Seasonality Sensible heat flux Urban areas 



We gratefully acknowledge the support of the following CEH staff: Alan Warwick and Cyril Barrett for design and construction of the scintillometer mountings, Geoff Wicks for assistance with the electronics and Dave McNeil for helping to build the rooftop weather station. This work would not have been possible without the generous co-operation of several people in Swindon who very kindly gave permission for equipment to be installed on their property. We also wish to thank the Science and Technology Facilities Council staff at Chilbolton Observatory for use of their test range for the scintillometer comparison. This work was funded by the Natural Environment Research Council, UK.


  1. Andreas EL (1988) Estimating C\(_{n}^{2}\) over snow and sea ice from meteorological data. J Opt Soc Am 5:481–495CrossRefGoogle Scholar
  2. Andreas EL (1989) Two-wavelength method of measuring path-averaged turbulent surface heat fluxes. J Atmos Ocean Technol 6:280–292CrossRefGoogle Scholar
  3. Balogun A, Adegoke J, Vezhapparambu S, Mauder M, McFadden J, Gallo K (2009) Surface energy balance measurements above an exurban residential neighbourhood of Kansas City, Missouri. Boundary-Layer Meteorol 133:299–321CrossRefGoogle Scholar
  4. Bergeron O, Strachan IB (2010) Wintertime radiation and energy budget along an urbanization gradient in Montreal, Canada. Int J Climatol 32:137–152CrossRefGoogle Scholar
  5. Beyrich F, De Bruin HAR, Meijninger WML, Schipper JW, Lohse H (2002) Results from 1-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Boundary-Layer Meteorol 105:85–97CrossRefGoogle Scholar
  6. Beyrich F, Bange J, Hartogensis O, Raasch S, Braam M, van Dinther D, Gräf D, van Kesteren B, van den Kroonenberg A, Maronga B, Martin S, Moene A (2012) Towards a validation of scintillometer measurements: the LITFASS-2009 experiment. Boundary-Layer Meteorol 144:83–112CrossRefGoogle Scholar
  7. Braam M, Bosveld F, Moene A (2012) On Monin–Obukhov scaling in and above the atmospheric surface layer: the complexities of elevated scintillometer measurements. Boundary-Layer Meteorol 144:157–177CrossRefGoogle Scholar
  8. Chehbouni A, Watts C, Kerr YH, Dedieu G, Rodriguez JC, Santiago F, Cayrol P, Boulet G, Goodrich DC (2000a) Methods to aggregate turbulent fluxes over heterogeneous surfaces: application to SALSA data set in Mexico. Agric For Meteorol 105:133–144CrossRefGoogle Scholar
  9. Chehbouni A, Watts C, Lagouarde JP, Kerr YH, Rodriguez JC, Bonnefond JM, Santiago F, Dedieu G, Goodrich DC, Unkrich C (2000b) Estimation of heat and momentum fluxes over complex terrain using a large aperture scintillometer. Agric For Meteorol 105:215–226CrossRefGoogle Scholar
  10. Cheinet S, Beljaars A, Weiss-Wrana K, Hurtaud Y (2011) The use of weather forecasts to characterise near-surface optical turbulence. Boundary-Layer Meteorol 138:453–473CrossRefGoogle Scholar
  11. Christen A, Vogt R (2004) Energy and radiation balance of a central European city. Int J Climatol 24:1395–1421CrossRefGoogle Scholar
  12. Clifford SF, Ochs GR, Lawrence RS (1974) Saturation of optical scintillation by strong turbulence. J Opt Soc Am 64:148–154CrossRefGoogle Scholar
  13. Coutts AM, Beringer J, Tapper NJ (2007) Impact of increasing urban density on local climate: spatial and temporal variations in the surface energy balance in Melbourne, Australia. J Appl Meteorol Climatol 46:477–493CrossRefGoogle Scholar
  14. De Bruin HAR, Kohsiek W, Van den Hurk BJJM (1993) A verification of some methods to determine the fluxes of momentum, sensible heat, and water-vapour using standard-deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63:231–257CrossRefGoogle Scholar
  15. Detto M, Montaldo N, Albertson JD, Mancini M, Katul G (2006) Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour Res 42:16. doi: 10.1029/2005wr004693 Google Scholar
  16. Evans JG (2009) Long-path scintillometry over complex Terrain to determine areal-averaged sensible and latent heat fluxes. The University of Reading, PhD, Soil Science Department 181 ppGoogle Scholar
  17. Evans JG, McNeil DD, Finch JW, Murray T, Harding RJ, Ward HC, Verhoef A (2012) Determination of turbulent heat fluxes using a large aperture scintillometer over undulating mixed agricultural terrain. Agric For Meteorol 166–167:221–233CrossRefGoogle Scholar
  18. Ezzahar J, Chehbouni A, Hoedjes JCB (2007) On the application of scintillometry over heterogeneous grids. J Hydrol 334:493–501CrossRefGoogle Scholar
  19. Frey CM, Parlow E, Vogt R, Harhash M, Abdel Wahab MM (2011) Flux measurements in Cairo. Part 1: in situ measurements and their applicability for comparison with satellite data. Int J Climatol 31:218–231CrossRefGoogle Scholar
  20. Garratt JR (1978) Transfer characteristics for a heterogeneous surface of large aerodynamic roughness. Q J R Meteorol Soc 104:491–502CrossRefGoogle Scholar
  21. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, UK, 316 ppGoogle Scholar
  22. Goldbach A, Kuttler W (2013) Quantification of turbulent heat fluxes for adaptation strategies within urban planning. Int J Climatol 33:143–159CrossRefGoogle Scholar
  23. Gouvea ML, Grimmond CSB (2010) Spatially integrated measurements of sensible heat flux using scintillometry. Ninth Symposium on the Urban Environment, Keystone, Colorado, 2nd-6th August 2010Google Scholar
  24. Green AE, Astill MS, McAneney KJ, Nieveen JP (2001) Path-averaged surface fluxes determined from infrared and microwave scintillometers. Agric For Meteorol 109:233–247CrossRefGoogle Scholar
  25. Grimmond CSB, Cleugh HA (1994) A simple method to determine Obukhov lengths for suburban areas. J Appl Meteorol 33:435–440CrossRefGoogle Scholar
  26. Grimmond CSB, Oke TR (1995) Comparison of heat fluxes from summertime observations in the suburbs of four north American cities. J Appl Meteorol 34:873–889CrossRefGoogle Scholar
  27. Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292CrossRefGoogle Scholar
  28. Grimmond CSB, Oke TR (2002) Turbulent heat fluxes in urban areas: observations and a local-scale urban meteorological parameterization scheme (LUMPS). J Appl Meteorol 41:792–810CrossRefGoogle Scholar
  29. Grimmond CSB, Souch C, Hubble MD (1996) Influence of tree cover on summertime surface energy balance fluxes, San Gabriel Valley, Los Angeles. Climate Res 06:45–57CrossRefGoogle Scholar
  30. Grimmond CSB, King TS, Roth M, Oke TR (1998) Aerodynamic roughness of urban areas derived from wind observations. Boundary-Layer Meteorol 89:1–24CrossRefGoogle Scholar
  31. Grimmond CSB, Salmond JA, Oke TR, Offerle B, Lemonsu A (2004) Flux and turbulence measurements at a densely built-up site in Marseille: heat, mass (water and carbon dioxide), and momentum. J Geophys Res (Atmos) 109:D24101. doi: 10.1029/2004JD004936 CrossRefGoogle Scholar
  32. Guyot A, Cohard J-M, Anquetin S, Galle S, Lloyd CR (2009) Combined analysis of energy and water balances to estimate latent heat flux of a Sudanian small catchment. J Hydrol 375:227–240CrossRefGoogle Scholar
  33. Hartogensis OK, Watts CJ, Rodriguez JC, De Bruin HAR (2003) Derivation of an effective height for scintillometers: La Poza experiment in Northwest Mexico. J Hydrometerol 4:915–928CrossRefGoogle Scholar
  34. Hill RJ, Clifford SF, Lawrence RS (1980) Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations. J Opt Soc Am 70:1192–1205CrossRefGoogle Scholar
  35. Hill RJ, Bohlander RA, Clifford SF, McMillan RW, Priestly JT, Schoenfeld WP (1988) Turbulence-induced millimeter-wave scintillation compared with micrometeorological measurements. IEEE Trans Geosci Remote Sens 26:330–342CrossRefGoogle Scholar
  36. Hill RJ, Ochs GR, Wilson JJ (1992) Measuring surface-layer fluxes of heat and momentum using optical scintillation. Boundary-Layer Meteorol 58:391–408CrossRefGoogle Scholar
  37. Hiller RV, McFadden JP, Kljun N (2011) Interpreting CO\(_2\) fluxes over a suburban lawn: the influence of traffic emissions. Boundary-Layer Meteorol 138:215–230CrossRefGoogle Scholar
  38. Hoedjes JCB, Zuurbier RM, Watts CJ (2002) Large aperture scintillometer used over a homogeneous irrigated area, partly affected by regional advection. Boundary-Layer Meteorol 105:99–117CrossRefGoogle Scholar
  39. Hoedjes JCB, Chehbouni A, Ezzahar J, Escadafal R, De Bruin HAR (2007) Comparison of large aperture scintillometer and eddy covariance measurements: can thermal infrared data be used to capture footprint-induced differences? J Hydrometerol 8:144–159CrossRefGoogle Scholar
  40. Hsieh CI, Katul G, Chi T (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772CrossRefGoogle Scholar
  41. Järvi L, Rannik U, Mammarella I, Sogachev A, Aalto PP, Keronen P, Siivola E, Kulmala M, Vesala T (2009) Annual particle flux observations over a heterogeneous urban area. Atmos Chem Phys 9:7847–7856CrossRefGoogle Scholar
  42. Järvi L, Grimmond CSB, Christen A (2011) The surface urban energy and water balance scheme (SUEWS): evaluation in Los Angeles and Vancouver. J Hydrol 411:219–237CrossRefGoogle Scholar
  43. Järvi L, Nordbo A, Junninen H, Riikonen A, Moilanen J, Nikinmaa E, Vesala T (2012) Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010. Atmos Chem Phys 12:8475–8489CrossRefGoogle Scholar
  44. Kanda M, Moriwaki R, Roth M, Oke T (2002) Area-averaged sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry. Boundary-Layer Meteorol 105:177–193CrossRefGoogle Scholar
  45. Kawai T, Kanda M (2010) Urban energy balance obtained from the comprehensive outdoor scale model experiment. Part I: basic features of the surface energy balance. J Appl Meteorol Climatol 49:1341–1359CrossRefGoogle Scholar
  46. Keogh S, Mills G, Fealy R (2012) The energy budget of the urban surface: two locations in Dublin. Irish Geogr 45:1–23CrossRefGoogle Scholar
  47. Kleissl J, Gomez J, Hong SH, Hendrickx JMH, Rahn T, Defoor WL (2008) Large aperture scintillometer intercomparison study. Boundary-Layer Meteorol 128:133–150CrossRefGoogle Scholar
  48. Kleissl J, Hong SH, Hendrickx JMH (2009a) New Mexico scintillometer network supporting remote sensing and hydrologic and meteorological models. Bull Am Meteorol Soc 90:207–218CrossRefGoogle Scholar
  49. Kleissl J, Watts CJ, Rodriguez JC, Naif S, Vivoni ER (2009b) Scintillometer intercomparison study-continued. Boundary-Layer Meteorol 130:437–443CrossRefGoogle Scholar
  50. Kleissl J, Hartogensis O, Gomez J (2010) Test of scintillometer saturation correction methods using field experimental data. Boundary-Layer Meteorol 137:493–507CrossRefGoogle Scholar
  51. Kohsiek W, Herben MHAJ (1983) Evaporation derived from optical and radio-wave scintillation. Appl Opt 22:2566–2570CrossRefGoogle Scholar
  52. Kohsiek W, Meijninger WML, De Bruin HAR, Beyrich F (2006) Saturation of the large aperture scintillometer. Boundary-Layer Meteorol 121:111–126. doi: 10.1007/s10546-005-9031-7 CrossRefGoogle Scholar
  53. Kotthaus S, Grimmond CSB (2013a) Energy exchange in a dense urban environment—Part I: temporal variability of long-term observations in central London. Urban Clim. (in press) doi: 10.1016/j.uclim.2013.10.002
  54. Kotthaus S, Grimmond CSB (2013b) Energy exchange in a dense urban environment—Part II: impact of spatial heterogeneity of the surface. Urban Clim. (in press) doi: 10.1016/j.uclim.2013.10.001
  55. Lagouarde JP, Irvine M, Bonnefond JM, Grimmond CSB, Long N, Oke TR, Salmond JA, Offerle B (2006) Monitoring the sensible heat flux over urban areas using large aperture scintillometry: case study of Marseille city during the ESCOMPTE experiment. Boundary-Layer Meteorol 118:449–476. doi: 10.1007/s10546-005-9001-0 CrossRefGoogle Scholar
  56. Lemonsu A, Grimmond CSB, Masson V (2004) Modeling the surface energy balance of the core of an old Mediterranean city: Marseille. J Appl Meteorol 43:312–327CrossRefGoogle Scholar
  57. Liu SM, Xu ZW, Zhu ZL, Jia ZZ, Zhu MJ (2013) Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J Hydrol 487:24–38. doi: 10.1016/j.jhydrol.2013.02.025 CrossRefGoogle Scholar
  58. Loridan T, Grimmond CSB (2012) Characterization of energy flux partitioning in urban environments: links with surface seasonal properties. J Appl Meteorol Climatol 51:219–241. doi: 10.1175/jamc-d-11-038.1 CrossRefGoogle Scholar
  59. Maronga B, Raasch S (2013) Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment. Boundary-Layer Meteorol 146:17–44. doi: 10.1007/s10546-012-9748-z CrossRefGoogle Scholar
  60. Maronga B, Moene AF, Dinther D, Raasch S, Bosveld FC, Gioli B (2013) Derivation of structure parameters of temperature and humidity in the convective boundary layer from large-eddy simulations and implications for the interpretation of scintillometer observations. Boundary-Layer Meteorol 148:1–30. doi: 10.1007/s10546-013-9801-6 CrossRefGoogle Scholar
  61. Meijninger WML, De Bruin HAR (2000) The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer. J Hydrol 229:42–49CrossRefGoogle Scholar
  62. Meijninger WML, Green AE, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002a) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface - Flevoland field experiment. Boundary-Layer Meteorol 105:63–83CrossRefGoogle Scholar
  63. Meijninger WML, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002b) Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface - Flevoland field experiment. Boundary-Layer Meteorol 105:37–62CrossRefGoogle Scholar
  64. Meijninger WML, Beyrich F, Lüdi A, Kohsiek W, De Bruin HAR (2006) Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—a contribution to LITFASS-2003. Boundary-Layer Meteorol 121:89–110CrossRefGoogle Scholar
  65. Mestayer P, Bagga I, Calmet I, Fontanilles G, Gaudin D, Lee JH, Piquet T, Rosant J-M, Chancibault K, Lebouc L, Letellier L, Mosini M-L, Rodriguez F, Rouaud J-M, Sabre M, Tétard Y, Brut A, Selves J-L, Solignac P-A, Brunet Y, Dayau S, Irvine M, Lagouarde J-P, Kassouk Z, Launeau P, Connan O, Defenouillère P, Goriaux M, Hébert D, Letellier B, Mario D, Najjar G, Nerry F, Quentin C, Biron R, Cohard J-M, Galvez J, Klein P (2011) The FluxSAP 2010 hydroclimatological experimental campaign over an heterogeneous urban area. 11th EMS Annual Meeting, Berlin, Germany, 12th–16th Sep 2011Google Scholar
  66. Moene AF (2003) Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation. Boundary-Layer Meteorol 107:635–653CrossRefGoogle Scholar
  67. Moriwaki R, Kanda M (2004) Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J Appl Meteorol 43:1700–1710CrossRefGoogle Scholar
  68. Mustchin J, Pauscher L, Ward HC, Kotthaus S, Gouvea M, Morrison W, Grimmond CSB (2013) Comparison of three large aperture scintillometer models over London. Tübingen Atmospheric Physics Symposium “Scintillometers and Applications”, Tübingen, Germany, 7th–9th Oct 2013Google Scholar
  69. Nordbo A, Järvi L, Haapanala S, Moilanen J, Vesala T (2013) Intra-City variation in urban morphology and turbulence structure in Helsinki, Finland. Boundary-Layer Meteorol 146:469–496CrossRefGoogle Scholar
  70. Offerle B, Grimmond CSB, Fortuniak K (2005) Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre. Int J Climatol 25:1405–1419CrossRefGoogle Scholar
  71. Offerle B, Grimmond CSB, Fortuniak K, Pawlak W (2006) Intraurban differences of surface energy fluxes in a central European city. J Appl Meteorol Climatol 45:125–136CrossRefGoogle Scholar
  72. Oke TR, Cleugh HA (1987) Urban heat storage derived as energy balance residuals. Boundary-Layer Meteorol 39:233–245CrossRefGoogle Scholar
  73. Pasquill F (1974) Atmospheric diffusion. Wiley, New York, 429 ppGoogle Scholar
  74. Pauscher L (2010) Scintillometer Measurements above the urban area of London. University of Bayreuth, Diploma, Department of Micrometeorology 104 ppGoogle Scholar
  75. Roberts SM, Oke TR, Grimmond CSB, Voogt JA (2006) Comparison of four methods to estimate urban heat storage. J Appl Meteorol Climatol 45:1766–1781CrossRefGoogle Scholar
  76. Roth M, Salmond JA, Satyanarayana ANV (2006) Methodological considerations regarding the measurement of turbulent fluxes in the urban roughness sublayer: The role of scintillometery. Boundary-Layer Meteorol 121:351–375CrossRefGoogle Scholar
  77. Samain B, Ferket BVA, Defloor W, Pauwels VRN (2011a) Estimation of catchment averaged sensible heat fluxes using a large aperture scintillometer. Water Resour Res 47:W05536Google Scholar
  78. Samain B, Simons GWH, Voogt MP, Defloor W, Bink N-J, Pauwels VRN (2011b) Consistency between hydrological model, large aperture scintillometer and remote sensing based evapotranspiration estimates for a heterogeneous catchment. Hydrol Earth Syst Sci 8:10863–10894CrossRefGoogle Scholar
  79. Samain B, Defloor W, Pauwels VRN (2012) Continuous time series of catchment-averaged sensible heat flux from a large aperture scintillometer: efficient estimation of stability conditions and importance of fluxes under stable conditions. J Hydrometerol 13:423–442CrossRefGoogle Scholar
  80. Schmid HP (1994) Source areas for scalars and scalar fluxes. Boundary-Layer Meteorol 67:293–318CrossRefGoogle Scholar
  81. Schmid HP, Cleugh HA, Grimmond CSB, Oke TR (1991) Spatial variability of energy fluxes in suburban terrain. Boundary-Layer Meteorol 54:249–276CrossRefGoogle Scholar
  82. Steeneveld GJ, Tolk LF, Moene AF, Hartogensis OK, Peters W, Holtslag AAM (2011) Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: evaluating the boundary layer heat budget. J Geophys Res (Atmos) 116:D23114Google Scholar
  83. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 ppGoogle Scholar
  84. Thiermann V, Grassl H (1992) The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Boundary-Layer Meteorol 58:367–389CrossRefGoogle Scholar
  85. Van Kesteren B, Hartogensis O (2011) Analysis of the systematic errors found in the Kipp & Zonen large-aperture scintillometer. Boundary-Layer Meteorol 138:493–509CrossRefGoogle Scholar
  86. Vesala T, Järvi L, Launiainen S, Sogachev A, Rannik Ü, Mammarella I, Siivola E, Keronen P, Rinne J, Riikonen ANU, Nikinmaa E (2008) Surface-atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus B 60:188–199CrossRefGoogle Scholar
  87. Ward HC, Evans JG, Grimmond CSB (2013a) Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK. Atmos Chem Phys 13:4645–4666CrossRefGoogle Scholar
  88. Ward HC, Evans JG, Hartogensis OK, Moene AF, De Bruin HAR, Grimmond CSB (2013b) A critical revision of the estimation of the latent heat flux from two-wavelength scintillometry. Q J R Meteorol Soc 139:1912–1922CrossRefGoogle Scholar
  89. Weber S, Kordowski K (2010) Comparison of atmospheric turbulence characteristics and turbulent fluxes from two urban sites in Essen, Germany. Theor Appl Climatol 102:61–74CrossRefGoogle Scholar
  90. Wesely ML (1976) Combined effect of temperature and humidity fluctuations on refractive-index. J Appl Meteorol 15:43–49CrossRefGoogle Scholar
  91. Wood CR, Järvi L (2012) An overview of urban climate observations in Helsinki. Mag Finnish Air Pollut Prev Soc 30–33Google Scholar
  92. Wood CR, Kouznetsov RD, Gierens R, Nordbo A, Järvi L, Kallistratova MA, Kukkonen J (2013) On the temperature structure parameter and sensible heat flux over Helsinki from sonic anemometry and scintillometry. J Atmos Ocean Technol 30:1604–1615CrossRefGoogle Scholar
  93. Wood N, Mason P (1991) The influence of static stability on the effective roughness lengths for momentum and heat transfer. Q J R Meteorol Soc 117:1025–1056CrossRefGoogle Scholar
  94. Wyngaard JC (1973) On surface-layer turbulence. In Haugen DA (Eds) Workshop on micrometeorology, American Meteorological Society. Boston, pp 101–149Google Scholar
  95. Zieliński M, Fortuniak K, Pawlak W (2012) Turbulent sensible heat flux in Łódź obtained from scintillometer measurements—comparison of free and mix algorithms. Contempory Trends Geosci 1:109–117Google Scholar
  96. Zilitinkevich SS, Mammarella I, Baklanov AA, Joffre SM (2008) The effect of stratification on the aerodynamic roughness length and displacement height. Boundary-Layer Meteorol 129:179–190CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • H. C. Ward
    • 1
    • 2
  • J. G. Evans
    • 1
  • C. S. B. Grimmond
    • 2
    • 3
  1. 1.Centre for Ecology and HydrologyWallingfordUK
  2. 2.Department of GeographyKing’s College LondonLondonUK
  3. 3.Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations