Advertisement

Boundary-Layer Meteorology

, Volume 149, Issue 3, pp 425–453 | Cite as

Low Tropospheric Layers Over Reunion Island in Lidar-Derived Observations and a High-Resolution Model

  • D. Lesouëf
  • F. Gheusi
  • P. Chazette
  • R. Delmas
  • J. Sanak
Article

Abstract

In November and December 2008, ground-based mobile lidar (GBML) measurements were carried out on Reunion Island (Indian Ocean, \(21^{\circ }07^{\prime }\hbox {S}, 55^{\circ }32^{\prime }\hbox {E}\), 700 km east of Madagascar) with an ultraviolet (355 nm) aerosol-backscatter lidar. Complex substructures were identified within the planetary boundary layer (PBL). A 500-m-resolution non-hydrostatic model was used to simulate the dynamics of the lower troposphere for two observation periods characteristic of the two main weather regimes in this season: the “trade-wind” regime and the “breeze” regime. The model captured the observed structures with a high degree of realism compared to the GBML. A complete diurnal cycle of the PBL along the south coast of the island during a “trade-wind” day was observed and simulated. The PBL depth was found to be anti-correlated with the wind speed. The model showed that the PBL along the coast behaved as a shallow-water flow in hydraulic theory. As the flow accelerated in response to lateral constriction, conversion of potential into kinetic energy forced the PBL top downwards. This favoured rapid transport of concentrated surface emissions within the contracted surface layer, with a possible impact on air quality. GBML observations were also conducted during the early morning of a “breeze” day on the western slope of the Maïdo mountain (2,200 m), at the top of which a new atmospheric observatory has been in operation since 2012. Both model and GBML revealed two superposed layers. The upper layer, higher than approximately 1,600 m above mean sea level, corresponded to free tropospheric air driven by the trade winds. Below, westerly counterflow advection of humid marine air occurred as a result of wake vortices in the lee of the island. The model suggests that free-tropospheric conditions prevail at the observatory from the second half of the night to mid-morning.

Keywords

Air quality High-resolution modelling Island meteorology Mobile aerosol-backscatter lidar Tropical marine boundary layer 

Notes

Acknowledgments

This work was granted access to the HPC resources of IDRIS under the allocation 2009-[96069] made by GENCI (Grand Equipement National du Calcul Intensif). The Commissariat à l’Energie Atomique (CEA) is also acknowledged for its support to the ECLAIR experiment. The authors are grateful to Juan Escobar of the University of Toulouse for precious help related to the MESO-NH model. Martial Barblu, Jean-Luc Baray, Yann Courcoux, Valentin Duflot, Emmanuel Duriez, Hélène Ferré, Franck Gabarrot, Christian Guadagno, Patrick Hernandez, Joyce Poinen, and Stéphane Richard are acknowledged for their contribution to the ECLAIR field campaign. Weather data from ground stations were used courtesy of Météo-France.

Supplementary material

10546_2013_9851_MOESM1_ESM.pdf (238 kb)
Supplementary material 1 (pdf 237 KB)
10546_2013_9851_MOESM2_ESM.pdf (237 kb)
Supplementary material 2 (pdf 237 KB)
10546_2013_9851_MOESM3_ESM.pdf (220 kb)
Supplementary material 3 (pdf 219 KB)
10546_2013_9851_MOESM4_ESM.pdf (219 kb)
Supplementary material 4 (pdf 219 KB)
10546_2013_9851_MOESM5_ESM.pdf (257 kb)
Supplementary material 5 (pdf 256 KB)
10546_2013_9851_MOESM6_ESM.pdf (176 kb)
Supplementary material 6 (pdf 175 KB)

References

  1. Baars H, Ansmann A, Engelmann R, Althausen D (2008) Continuous monitoring of the boundary-layer top with lidar. Atmos Chem Phys 8:7281–7296CrossRefGoogle Scholar
  2. Baldy S, Ancellet G, Bessafi M, Badr A (1996) Field observations of the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics). J Geophys Res 101:23835–23849CrossRefGoogle Scholar
  3. Baray J-L, Leveau J, Baldy S, Jouzel J, Keckhut P, Bergametti G, Ancellet G, Bencherif H, Cadet B, Carleer M, David C, de Mazière M, Faduilhe D, Godin Beekmann S, Goloub P, Goutail F, Metzger J-M, Morel B, Pommereau J-P, Porteneuve J, Portafaix T, Posny F, Robert L, Van Roozendael M (2006) An instrumented station for the survey of ozone and climate change in the southern tropics. J Environ Monitor 8:1020–1028CrossRefGoogle Scholar
  4. Bhugwant C, Brémaud P (2001) Simultaneous measurements of black carbon, PM10, ozone and \(\text{ NO }\xi \) variability at a locally polluted island in the southern tropics. J Atmos Chem 39:261–280CrossRefGoogle Scholar
  5. Bhugwant C, Siéja B, Bessafi M, Staudacher T, Ecormier J (2009) Atmospheric sulfur dioxide measurements during the 2005 and 2007 eruptions of the Piton de La Fournaise volcano: implications for human health and environmental changes. J Volcanol Geotherm Res 184:208–224CrossRefGoogle Scholar
  6. Bougeault P, Lacarrère P (1989) Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon Weather Rev 117:1872–1890CrossRefGoogle Scholar
  7. Brighton PW (1978) Strongly stratified flow past three-dimensional obstacles. Q J R Meteorol Soc 104:289–307CrossRefGoogle Scholar
  8. Brooks I (2003) Finding boundary layer top: application of a wavelet covariance transform to lidar backscatter profiles. J Atmos Ocean Technol 20:1092–1105CrossRefGoogle Scholar
  9. Burk SD, Haack T, Samelson RM (1999) Mesoscale simulation of supercritical, subcritical, and transcritical flow along coastal topography. J Atmos Sci 56:2780–2795CrossRefGoogle Scholar
  10. Chazette P (2003) The monsoon aerosol extinction properties at Goa during INDOEX as measure with lidar. J Geophys Res 108(D6):4167CrossRefGoogle Scholar
  11. Chazette P, Sanak J, Dulac F (2007) New approach for aerosol profiling with a lidar onboard an ultralight aircraft: application to the African monsoon multidisciplinary analysis. Environ Sci Technol 41:8335–8341CrossRefGoogle Scholar
  12. Chazette P, Raut J-C, Dulac F, Berthier S, Kim S-W, Royer P, Sanak J, Loaëc S, Grigaut-Desbrosses H (2010) Simultaneous observations of lower tropospheric continental aerosols with a ground-based, an airborne, and the spaceborne CALIOP lidar systems. J Geophys Res 115. doi: 10.1029/2009JD012341
  13. Chazette P, Bocquet M, Royer P, Winiarek V, Raut J-C, Labazuy P, Gouhier M, Lardier M, Cariou J-P (2011) Eyjafjallajökull ash concentrations derived from both lidar and modelling. J Geophys Res. doi: 10.1029/2011JD015755
  14. Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126:1–30CrossRefGoogle Scholar
  15. De Wekker SFJ, Steyn DG, Nyeki S (2004) A comparison of aerosol-layer and convective boundary-layer structure over a mountain range during STAAARTE ’97. Boundary-Layer Meteorol 113:249–271Google Scholar
  16. De Wekker SFJ, Steyn DG, Fast JD, Rotach MW, Zhong S (2005) The performance of RAMS in representing the convective boundary layer structure in a very steep valley. Environ Fluid Mech 5:32–62Google Scholar
  17. Drobinski P, Flamant C, Dusek J, Flamant PH, Pelon J (2001) Observational evidence and modelling of an internal hydraulic jump at the atmospheric boundary-layer top during a tramontane event. Boundary-Layer Meteorol 98:497–515CrossRefGoogle Scholar
  18. Durran DR (1990) Mountain waves and downslope winds. In: Blumen W (ed) Atmospheric process over complex terrain, vol 23(45). American Meteorology Society Monographs, Boston, pp 59–81Google Scholar
  19. Gal-Chen T, Sommerville RCJ (1975) On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J Comput Phys 17:209–228CrossRefGoogle Scholar
  20. Gheusi F, Davies HC (2004) Autumnal precipitation distribution on the southern flank of the Alps: a numerical-model study of the mechanisms. Q J R Meteorol Soc 130:2125–2152CrossRefGoogle Scholar
  21. Gheusi F, Stein J (2002) Lagrangian description of airflows using Eulerian passive tracers. Q J R Meteorol Soc 128:337–360CrossRefGoogle Scholar
  22. Gheusi F, Ravetta F, Delbarre H, Tsamalis C, Chevalier-Rosso A, Leroy C, Augustin P, Delmas R, Ancellet G, Athier G, Bouchou P, Campistron B, Cousin JM, Fourmentin M, Meyerfeld Y (2011) Pic 2005, a field campaign to investigate low-tropospheric ozone variability in the Pyrenees. Atmos Res 101:640–665CrossRefGoogle Scholar
  23. Hahn CJ, Merrill JT, Mendonca BG (1992) Meteorological influences during MLOPEX. J Geophys Res 97(D10):10291–10309CrossRefGoogle Scholar
  24. Hastenrath S (1991) Climate dynamics of the tropics. Kluwer, Dordrecht, 488 ppGoogle Scholar
  25. Henne S, Furger M, Nyeki S, Steibacher M, Neininger B, de Wekker SFJ, Dommen J, Spichtinger N, Stohl A, Prévôt ASH (2004) Quantification of topographic venting of boundary layer air to the free troposphere. Atmos Chem Phys 4:497–509CrossRefGoogle Scholar
  26. Hodzic A, Vautard R, Chazette P, Menut L, Bessagnet B (2006) Aerosol chemical and optical properties over the Paris area within ESQUIF project. Atmos Chem Phys 6:3257–3280CrossRefGoogle Scholar
  27. Lafore JP, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fisher C, Héreil P, Mascart P, Masson V, Pinty JP, Redelsperger JL, Richard E (1998) The MESONH Atmospheric Simulation System. Part 1: adiabatic formulation and control simulations. Ann Geophys 16:90–109CrossRefGoogle Scholar
  28. Lesouëf D (2010) Etudes numériques des circulations locales à la Réunion. Application à la dispersion de polluants. PhD thesis, Université de la Réunion, France, 196 ppGoogle Scholar
  29. Lesouëf D, Gheusi F, Delmas R, Escobar J (2011) Numerical simulations of local circulations and pollution transport over Reunion Island. Ann Geophys 29:53–69CrossRefGoogle Scholar
  30. Lipps FB, Hemler RS (1982) A scale analysis of deep moist convection and some related numerical calculations. J Atmos Sci 39:2192–2210CrossRefGoogle Scholar
  31. Lugauer M, Baltensperger U, Furger M, Gäggeler H, Jost D, Nyeki S, Schwikowski M (2000) Influences of vertical transport and scavenging on aerosol particle surface area and radon decay product concentrations at the Jungfraujoch (3454 m above sea level). J Geophys Res 105(D15):19869–19879Google Scholar
  32. Masson V, Bougeault P (1996) Numerical simulation of a low-level wind created by complex orography: a Cierzo case study. Mon Weather Rev 124:701–715CrossRefGoogle Scholar
  33. Measures RM (1984) Laser remote sensing: fundamentals and applications. Wiley Interscience, New York, 521 ppGoogle Scholar
  34. Mendonca BG (1969) Local wind circulation on the slopes of Mauna Loa. J Appl Meteorol 8:533–541CrossRefGoogle Scholar
  35. Montroty R, Rabier F, Westrelin S, Faure G, Viltard N (2008) Impact of wind bogus and cloud- and rain-affected SSM/I data on tropical cyclone analyses and forecasts. Q J R Meteorol Soc 134:1673–1699CrossRefGoogle Scholar
  36. Morcrette J-J (1991) Radiation and cloud radiative properties in the European centre for medium range weather forecasts forecasting system. J Geophys Res 96:9121–9132CrossRefGoogle Scholar
  37. Nicolet M (1984) On the molecular scattering in the terrestrial atmosphere. Planet Space Sci 32:1467CrossRefGoogle Scholar
  38. Noilhan J, Planton S (1989) A simple parametrization of land surface processes for meteorological models. Mon Weather Rev 117:536–549CrossRefGoogle Scholar
  39. Nyeki S, Kalberer M, Colbeck I, De Wekker S, Furger M, Gäggeler HW, Kossmann M, Lugauer M, Steyn D, Weingartner E, Wirth M, Baltensperger U (2000) Convective boundary layer evolution to 4 km asl over high alpine terrain: airborne lidar observation over the Alps. Geophys Res Lett 27(5):689–692CrossRefGoogle Scholar
  40. Pinty J, Jabouille P (1998) A mixed-phase cloud parameterization for use in mesoscale non hydrostatic model: simulations of a squall line and of orographic precipitations. In: Proceedings of Conference of cloud physics, Everett, WA, USA. American Meteorological Society, Boston, pp 217–220Google Scholar
  41. Poulos GS, Bossert JE, McKee TB, Pielke RA (2000) The interaction of Katabatic flow and mountain waves. Part I: observations and idealized simulations. J Atmos Sci 57:1919–1936CrossRefGoogle Scholar
  42. Poulos GS, Bossert JE, McKee TB, Pielke RA (2007) The interaction of Katabatic flow and mountain waves. Part II: case study analysis and conceptual model. J Atmos Sci 64:1857–1879CrossRefGoogle Scholar
  43. Randriamiarisoa H, Chazette P, Couvert P, Sanak J, Mégie G, (2006) Relative humidity impact on aerosol parameters in a Paris suburban area. Atmos Chem Phys 6:1389–1407Google Scholar
  44. Raut J-C, Chazette P (2009) Assessment of vertically-resolved PM10 from mobile lidar observations. Atmos Chem Phys 9:8617–8638CrossRefGoogle Scholar
  45. Rogers DP, Dorman CE et al (1998) Highlights of coastal waves 1996. Bull Amer Meteorol Soc 79:1307–1326CrossRefGoogle Scholar
  46. Royer P, Chazette P, Sartelet K, Zhang QJ, Beekmann M, Raut J-C (2011) Lidar-derived PM10 and comparison with regional modeling in the frame of the MEGAPOLI Paris summer campaign. Atmos Chem Phys 11:11861–11909. doi: 10.5194/acp-11-11861-2011 CrossRefGoogle Scholar
  47. Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027CrossRefGoogle Scholar
  48. Staudacher T, Ferrazzini V, Peltier A, Kowalski P, Boissier P, Catherine P, Lauret F, Massin F (2009) The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la Fournaise (La Réunion Island, Indian Ocean). J Volcanol Geotherm Res 184:126–137CrossRefGoogle Scholar
  49. Stein J, Richard E, Lafore JP, Pinty JP, Asencio N, Cosma S (2000) High-resolution non-hydrostatic simulations of flash-flood episodes with grid-nesting and ice-phase parameterization. Meteorol Atmos Phys 72:203–221CrossRefGoogle Scholar
  50. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 666 ppGoogle Scholar
  51. Tulet P, Villeneuve N (2011) Large scale modeling of the transport, chemical transformation and mass budget of the sulfur emitted during the April 2007 eruption of Piton de la Fournaise. Atmos Chem Phys 11:4533–4546CrossRefGoogle Scholar
  52. Viane C, Bhugwant C, Siéja B, Staudacher T, Démoly P (2009) Etude comparative des émissions de gaz volcanique du Piton de la Fournaise et des hospitalisations pour asthme de la population réunionnaise de 2005 ‘a 2007. Revue Française d’Allergologie 49:346–351CrossRefGoogle Scholar
  53. Whiteman CD (1990) Observations of thermally developed wind systems in mountainous terrain. Atmospheric processes over complex terrain. Meteorological Monographs No. 45. American Meteorological Society, Boston, pp 5–42Google Scholar
  54. Whiteman CD (2000) Mountain meteorology. Oxford University Press, New York, 355 ppGoogle Scholar
  55. Winant CD, Dorman CE, Friehe CA, Beardsley RC (1988) The marine layer off Northern California: an example of supercritical channel flow. J Atmos Sci 45:3588–3605CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • D. Lesouëf
    • 1
  • F. Gheusi
    • 2
  • P. Chazette
    • 3
  • R. Delmas
    • 1
  • J. Sanak
    • 3
  1. 1.Laboratoire de l’Atmosphère et des Cyclones, CNRS/INSU UMR8105Université de la RéunionLa RéunionFrance
  2. 2.Laboratoire d’Aérologie, CNRS/INSU UMR5560Université Toulouse IIIToulouseFrance
  3. 3.Laboratoire des Sciences du Climat et de l’EnvironnementCEA-CNRS-Université Versailles Saint-Quentin, CEA SaclayGif-sur-YvetteFrance

Personalised recommendations