Boundary-Layer Meteorology

, Volume 148, Issue 2, pp 333–356 | Cite as

Large-Eddy Atmosphere–Land-Surface Modelling over Heterogeneous Surfaces: Model Development and Comparison with Measurements

  • Yaping Shao
  • Shaofeng Liu
  • Jan H. Schween
  • Susanne Crewell
Article

Abstract

A model is developed for the large-eddy simulation (LES) of heterogeneous atmosphere and land-surface processes. This couples a LES model with a land-surface scheme. New developments are made to the land-surface scheme to ensure the adequate representation of atmosphere–land-surface transfers on the large-eddy scale. These include, (1) a multi-layer canopy scheme; (2) a method for flux estimates consistent with the large-eddy subgrid closure; and (3) an appropriate soil-layer configuration. The model is then applied to a heterogeneous region with 60-m horizontal resolution and the results are compared with ground-based and airborne measurements. The simulated sensible and latent heat fluxes are found to agree well with the eddy-correlation measurements. Good agreement is also found in the modelled and observed net radiation, ground heat flux, soil temperature and moisture. Based on the model results, we study the patterns of the sensible and latent heat fluxes, how such patterns come into existence, and how large eddies propagate and destroy land-surface signals in the atmosphere. Near the surface, the flux and land-use patterns are found to be closely correlated. In the lower boundary layer, small eddies bearing land-surface signals organize and develop into larger eddies, which carry the signals to considerably higher levels. As a result, the instantaneous flux patterns appear to be unrelated to the land-use patterns, but on average, the correlation between them is significant and persistent up to about 650 m. For a given land-surface type, the scatter of the fluxes amounts to several hundred W \(\text{ m }^{-2}\), due to (1) large-eddy randomness; (2) rapid large-eddy and surface feedback; and (3) local advection related to surface heterogeneity.

Keywords

Atmosphere–land interaction Heterogeneous surfaces  Large-eddy simulation 

References

  1. Albertson JD, Kustas WP, Scanlon TM (2001) Large-eddy simulation over heterogeneous terrain with remotely sensed land surface conditions. Water Resour Res 37(7):1939–1953CrossRefGoogle Scholar
  2. Ament F, Simmer C (2006) Improved representation of land-surface heterogeneity in a non-hydrostatic numerical weather prediction model. Boundary-Layer Meteorol 121:153–174CrossRefGoogle Scholar
  3. Avissar R, Schmidt T (1998) An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulation model. J Atmos Sci 55:2666–2689CrossRefGoogle Scholar
  4. Beare RJ, Macvean MK, Holtslag AAM, Cuxart J, Esau I, Golaz J-C, Jimenez MA, Khairoutdinov M, Kosovic B, Lewellen D, Lund TS, Lundquist JK, McCabe A, Moene AF, Noh Y, Raasch S, Sullivan PP (2004) An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118:247–272CrossRefGoogle Scholar
  5. Bhumralker CM (1975) Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J Appl Meteorol 14:1246–1258CrossRefGoogle Scholar
  6. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585CrossRefGoogle Scholar
  7. Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. JQSRT 91:233–244CrossRefGoogle Scholar
  8. Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41:453–480CrossRefGoogle Scholar
  9. Deardorff JW (1974) On the entrainment rate of a stratocumulus-topped mixed layer. Q J R Meteorol Soc 102:563–582CrossRefGoogle Scholar
  10. Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J Geophys Res 83:1889–1903CrossRefGoogle Scholar
  11. Deardorff JW (1980) Stratocumulus-caped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18:495–527CrossRefGoogle Scholar
  12. Dickinson RE, Henderson-Sellers A, Kennedy P (1993) Biosphere-aAtmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model. TN387+STR, NCARGoogle Scholar
  13. Ek MB, Mitchell KE, Lin Y, Rogers E, Grummann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational Mesoscale Eta Model. J Geophys Res 108:8851. doi:10.1029/2002JD003296 CrossRefGoogle Scholar
  14. Foken T (2006) 50 Years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol 119:431–447. doi:10.1007/s10546-006-9048-6 CrossRefGoogle Scholar
  15. Giorgi F, Avissar R (1997) Representation of heterogeneity effects in earth system modeling: experience from land surface modeling. Rev Geophys 35:413–437CrossRefGoogle Scholar
  16. Hechtel LM, Moeng C-H, Stull RB (1990) The effects of nonhomogeneous surface fluxes on the convective boundary layer: a case study using large-eddy simulation. J Atmos Sci 47:1721–1741CrossRefGoogle Scholar
  17. Heinemann G, Kerschgens M (2005) Comparison of methods for area-averaging surface energy fluxes over heterogeneous land surfaces using high-resolution non-hydrostatic simulations. Int J Climatol 25:379–403. doi:10.1002/joc.1123 CrossRefGoogle Scholar
  18. Holtslag AAM, Moeng C-H (1991) Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J Atmos Sci 48:1690–1698CrossRefGoogle Scholar
  19. Huang HY, Margulis SA (2009) On the impact of surface heterogeneity on a realistic convective boundary layer. Water Resour Res 45:W04425. doi:10.1029/2008WR007175 CrossRefGoogle Scholar
  20. Huang HY, Margulis SA (2010) Evaluation of a fully coupled large-eddy simulation-land surface model and its diagnosis of land-atmosphere feedbacks. Water Resour Res 46:W06512. doi:10.1029/2009WR008232
  21. Huang HY, Stevens B, Margulis SA (2008) Application of dynamic subgrid-scale models for large-eddy simulation of the daytime convective boundary layer over heterogeneous surfaces. Boundary-Layer Meteorol 126:327–348. doi:10.1007/s10546-007-9239-9 CrossRefGoogle Scholar
  22. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhourse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103. doi:10.1029/2008JD009944
  23. Irannejad P, Shao Y (1998) Description and validation of the atmosphere–land-surface interaction scheme (ALSIS) with HAPEX and Cabauw data. Glob Planet Change 19:87–114CrossRefGoogle Scholar
  24. Kleissl J, Kumar V, Menevea C, Parlange MB (2006) Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions. Water Resour Res 42: doi:10.1029/2005WR004685
  25. Kumar V, Kleissl J, Meneveau C, Parlange MB (2006) Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: atmospheric stability and scaling issues. Water Resour Res 42: doi:10.1029/2005WR004651
  26. Letzel MO, Raasch S (2003) Large eddy simulation of thermally induced oscillation in the convective boundary layer. J Atmos Sci 60:2328–2341CrossRefGoogle Scholar
  27. Liu S, Shao Y (2013) Soil layer configuration requirement for large-eddy atmosphere and land surface coupled modeling. Atmos Sci Lett. doi:10.1002/asl.426
  28. Manabe S (1969) Climate and ocean circulation: 1. The atmospheric circulation and the hydrology of the earth’s surface. Mon Weather Rev 97:739–774CrossRefGoogle Scholar
  29. Maronga B, Raasch S (2013) Large-eddy simulation of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment. Boundary-Layer Meteorol 146:17–44CrossRefGoogle Scholar
  30. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res 102(D14):16663–16682Google Scholar
  31. Moeng C-H (1984) A large-eddy simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41:2052–2062CrossRefGoogle Scholar
  32. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the ground layer of the atmosphere (in Russian). Tr Geofiz Inst Akad Nauk SSSR 151:163–187Google Scholar
  33. Noilhan J, Planton S (1989) A simple parametrization of land surface processes for meteorological models. Mon Weather Rev 117:536–549Google Scholar
  34. Oleson KW, Niu GY, Yang ZL, Lawrence DM, Thornton PE, Lawrence PJ, Stockli R, Dickinson RE, Bonan GB, Levis S (2007) CLM3.5 Documentation. UCAR, http://cgd.ucar.edu/tss/clm/distribution/clm3.5
  35. Patton EG, Sullivan PP, Moeng C-H (2005) The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmos Sci 62:2078–2097CrossRefGoogle Scholar
  36. Raasch S, Harbusch G (2001) An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation. Boundary-Layer Meteorol 101:31–59CrossRefGoogle Scholar
  37. Raupach MR (1992) Drag and drag partition on rough surfaces. Boundary-Layer Meteorol 60:374–396CrossRefGoogle Scholar
  38. Schmitgen S, Gei H, Ciais P, Neininger B, Brunet Y, Reichstein M, Kley D, Volz-Thomas A (2004) Carbon dioxide uptake of a forested region in southwest France derived from airborne CO\(_{2}\) and CO measurements in a quasi-Lagrangian experiment. J Geophys Res 109(D14302). doi:10.1029/2003JD004335.
  39. Shao Y, Yang Y (2008) A theory for drag partition over rough surfaces. J Geophys Res 113. doi:10.1029/2007JF000791
  40. Shao Y, Sogalla M, Kerschgens M, Brücher W (2001) Effects of land-surface heterogeneity upon surface fluxes and turbulent conditions. Meteorol Atmos Phys 78:157–181CrossRefGoogle Scholar
  41. Shaw R, Schumann U (1992) Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol 61:47–64. doi:10.1007/BF02033994 CrossRefGoogle Scholar
  42. Shaw RH, Hartog G, Neumann HH (1988) Influence of foliar density and thermal stability on profiles of Reynolds stress and turbulence intensity in a deciduous forest. Boundary-Layer Meterol 45:391–409CrossRefGoogle Scholar
  43. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF Version 3. NCAR/TN-475+STRGoogle Scholar
  44. Smagorinsky J (1963) General circulation experiments with the primitive equations, Part I: the basic experiment. Mon Weather Rev 91:99–164Google Scholar
  45. Sullivan PP, Moeng C-H, Stevens B, Lenschow DH, Mayor SD (1998) Structure of the entrainment zone capping the convective atmospheric boundary layer. J Atmos Sci 55:3042–3064CrossRefGoogle Scholar
  46. Vereecken H, Kollet S, Simmer C (2010) Patterns in soil–vegetation–atmosphere systems: monitoring, modeling, and data assimilation. Vadose Zone J 9:821–827. doi:10.2136/vzj2010.0122 CrossRefGoogle Scholar
  47. Waldhoff G (2010) Land use classification of 2009 for the Rur catchment. doi:10.1594/GFZ.TR32.1
  48. Zacharias S, Reyers M, Pinto JG, Schween JH, Crewell S, Kerschgens M (2012) Heat and moisture budgets from airborne measurements and high resolution model simulations. Meteorol Atmos Phys 117:47–61. doi:10.1007/s00703-012-0188-6 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yaping Shao
    • 1
  • Shaofeng Liu
    • 1
  • Jan H. Schween
    • 1
  • Susanne Crewell
    • 1
  1. 1.Institute for Geophysics and MeteorologyUniversity of CologneCologneGermany

Personalised recommendations