Boundary-Layer Meteorology

, Volume 147, Issue 3, pp 493–523 | Cite as

High Resolution Simulation of the Variability of Surface Energy Balance Fluxes Across Central London with Urban Zones for Energy Partitioning

  • Thomas Loridan
  • Fredrik Lindberg
  • Oriol Jorba
  • Simone Kotthaus
  • Susanne Grossman-Clarke
  • C. S. B. Grimmond
Article

Abstract

The parameterization of surface heat-flux variability in urban areas relies on adequate representation of surface characteristics. Given the horizontal resolutions (e.g. \(\approx \)0.1–1 km) currently used in numerical weather prediction (NWP) models, properties of the urban surface (e.g. vegetated/built surfaces, street-canyon geometries) often have large spatial variability. Here, a new approach based on Urban Zones to characterize Energy partitioning (UZE) is tested within a NWP model (Weather Research and Forecasting model; WRF v3.2.1) for Greater London. The urban land-surface scheme is the Noah/Single-Layer Urban Canopy Model (SLUCM). Detailed surface information (horizontal resolution 1 km) in central London shows that the UZE offers better characterization of surface properties and their variability compared to default WRF-SLUCM input parameters. In situ observations of the surface energy fluxes and near-surface meteorological variables are used to select the radiation and turbulence parameterization schemes and to evaluate the land-surface scheme and choice of surface parameters. For radiative fluxes, improved performance (e.g. \(>\)25 W m\(^{-2}\) root-mean-square error reduction for the net radiation) is attained with UZE parameters compared to the WRF v3.2.1 default for all three methods from the simplest to the most detailed. The UZE-based spatial fluxes reproduce a priori expectations of greater energy storage and less evaporation in the dense city centre compared to the residential surroundings. Problems in Noah/SLUCM partitioning of energy between the daytime turbulent fluxes are identified with the overestimation of the turbulent sensible heat and underestimation of the turbulent latent heat fluxes.

Keywords

Land-surface parameterization London Spatial variability Urban canopy model Urban energy fluxes Urban Zones for Energy partitioning Weather Research and Forecasting model 

Supplementary material

10546_2013_9797_MOESM1_ESM.docx (221 kb)
Supplementary material 1 (docx 221 KB)

References

  1. Allen L, Lindberg F, Grimmond CSB (2011) Global to city scale urban anthropogenic heat flux: model and variability. Int J Climatol 31:1990–2005. doi:10.1002/joc.2210 CrossRefGoogle Scholar
  2. Bohnenstengel SI, Evans S, Clark PA, Belcher S (2011) Simulations of the London urban heat island. Q J R Meteorol Soc 137:1625–1640. doi:10.1002/qj.855 CrossRefGoogle Scholar
  3. Bougeault P, Lacarrère P (1989) Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon Weather Rev 117:1872–1890CrossRefGoogle Scholar
  4. Chemel C, Sokhi RS (2012) Response of London’s urban heat island to a marine air intrusion in an easterly wind regime. Boundary-Layer Meteorol 144:65–81CrossRefGoogle Scholar
  5. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn state-NCAR MM5 modelling system. Part 1: model implementation and sensitivity. Mon Weather Rev 129:569–585CrossRefGoogle Scholar
  6. Chen F, Kusaka H, Bornstein R, Ching J, Grimmond CSB, Grossman-Clarke S, Loridan T, Manning KW, Martilli A, Miao S, Sailor D, Salamanca FP, Taha H, Tewari M, Wang X, Wyszogrodzki AA, Zhang C (2011a) The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int J Climatol 31:273–288. doi:10.1002/joc.2158 CrossRefGoogle Scholar
  7. Chen F, Miao S, Tewari M, Bao J-W, Kusaka H (2011b) A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. J Geophys Res 116(D12):D12105Google Scholar
  8. Chou M-D, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech Memo 104606, 85 ppGoogle Scholar
  9. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  10. Evans JP, Ekström M, Ji F (2011) Evaluating the performance of a WRF physics ensemble over South-East Australia. Clim Dyn 39:1241–1258. doi:10.1007/s00382-011-1244-5 CrossRefGoogle Scholar
  11. Flagg DD, Taylor PA (2011) Sensitivity of mesoscale model urban boundary layer meteorology to the scale of urban representation. Atmos Chem Phys 11:2951–2972CrossRefGoogle Scholar
  12. Greater London Authority (2010) The draft climate change adaptation strategy for London, 138 pp. http://www.london.gov.uk/climatechange/sites/climatechange/staticdocs/Climiate_change_adaptation.pdf
  13. Grell GA, Dévényi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:1693. doi:10.1029/2002GL015311 CrossRefGoogle Scholar
  14. Grimmond CSB, Oke TR (2002) Turbulent heat fluxes in urban areas: observations and a local-scale urban meteorological parameterization scheme (LUMPS). J Appl Meteorol 41:792–810CrossRefGoogle Scholar
  15. Grimmond CSB, Blackett M, Best M, Barlow J, Baik JJ, Belcher SE, Bohnenstengel SI, Calmet I, Chen F, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff S, Lee S-H, Loridan T, Martilli A, Masson V, Miao S, Oleson K, Pigeon G, Porson A, Ryu YH, Salamanca F, Shashua-Baris L, Steeneveld GJ, Tombrou M, Voogt J, Young D, Zhang N (2010) The International Urban Energy Balance Models Comparison Project: first results from Phase 1. J Appl Meteorol Climatol 49:1268–1292. doi:10.1175/2010JAMC2354.1 CrossRefGoogle Scholar
  16. Grimmond CSB, Blackett M, Best M, Baik JJ, Belcher SE, Bohnenstengel SI, Calmet I, Chen F, Coutts A, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry M, Kanda M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff ES, Lee S-H, Loridan T, Martilli A, Masson V, Miao S, Oleson K, Ooka R, Pigeon G, Porson A, Ryu Y-H, Salamanca F, Steeneveld G-J, Tombrou M, Voogt JA, Young D, Zhang N (2011) Initial results from Phase 2 of the International Urban Energy Balance Comparison Project. Int J Climatol 31:244–272. doi:10.1002/joc.2227 CrossRefGoogle Scholar
  17. Grossman-Clarke S, Zehnder JA, Loridan T, Grimmond CSB (2010) Contribution of land use changes to near surface air temperatures during recent summer heat events in the Phoenix metropolitan area. J Appl Meteorol Climatol 49:1649–1664. doi:10.1175/2010JAMC2362.1 CrossRefGoogle Scholar
  18. Hamilton I, Davies M, Steadman P, Stone A, Ridley I, Evans S (2009) The significance of the anthropogenic heat emissions of London’s buildings: a comparison against captured shortwave solar radiation. Build Environ 44:807–817. doi:10.1016/j.buildenv.2008.05.024 CrossRefGoogle Scholar
  19. Holt T, Pullen J (2007) Urban canopy modeling of the New York city metropolitan area: a comparison and validation of single and multilayer parameterizations. Mon Weather Rev 135:1906–1930CrossRefGoogle Scholar
  20. Hong S-Y (2010) A new stable boundary-layer mixing scheme and its impact on the simulated East Asia summer monsoon. Q J R Meteorol Soc 136:1481–1496CrossRefGoogle Scholar
  21. Hong S-Y, Dudhia J, Chen S-H (2004) A revised approach to ice microphysical processes for the bulk parameterization of cloud and precipitation. Mon Weather Rev 132:103–120CrossRefGoogle Scholar
  22. Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341CrossRefGoogle Scholar
  23. Hu X-M, Nielsen-Gammon JW, Zhang F (2010) Evaluation of three planetary boundary layer schemes in WRF model. J Appl Meteorol Climatol 49:1831–1844CrossRefGoogle Scholar
  24. Iacono MJ, Nehrkorn T (2010) Assessment of radiation options in the advanced research WRF weather forecast model. In: Proceedings of 1st atmospheric system research science team meeting, Bethesda, MD, Office of Science, U.S. Department of Energy, 15–19 March 2010Google Scholar
  25. Iamarino M, Beevers S, Grimmond CSB (2012) High resolution (space, time) anthropogenic heat emissions: London 1970–2025. Int J Climatol 32:1754–1767. doi: 10.1002/joc.2390 Google Scholar
  26. Janjic Z (2002) Non singular implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note No. 437. National Centers for Environmental Prediction, Camp Springs, MD, 61 ppGoogle Scholar
  27. Jankov I, Gallus W Jr, Segal M, Shaw B, Koch S (2005) The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Weather Forecast 20:1048–1060CrossRefGoogle Scholar
  28. Kain J (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRefGoogle Scholar
  29. Kotthaus S, Grimmond CSB (2012) Identification of micro-scale anthropogenic CO\(_{2}\), heat and moisture sources—processing eddy covariance fluxes for a dense urban environment. Atmos Environ 57:301–316CrossRefGoogle Scholar
  30. Kusaka H, Kimura F (2004) Thermal effects of urban canyon structure on the nocturnal heat island: numerical experiment using a mesoscale model coupled with an urban canopy model. J Appl Meteorol 43:1899–1910CrossRefGoogle Scholar
  31. Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound-Layer Meteorol 101:329–358CrossRefGoogle Scholar
  32. Lee S-H, Kim S-W, Angevine WM, Bianco L, McKeen SA, Senff CJ, Trainer M, Tucker SC, Zamora RJ (2011) Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 206 field campaign. Atmos Chem Phys 11:2127–2143CrossRefGoogle Scholar
  33. Lin Y-L, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22:1065–1092CrossRefGoogle Scholar
  34. Lin C-Y, Chen F, Huang J-C, Chen W-C, Liou Y-A, Chen W-N, Liu S-C (2008) Urban heat island effect and its impact on boundary layer development and land-sea circulation over northern Taiwan. Atmos Environ 42:5635–5649CrossRefGoogle Scholar
  35. Lindberg F, Grimmond CSB (2011) Nature of vegetation and building morphology characteristics across a city: influence on shadow patterns and mean radiant temperatures in London. Urban Ecosyst 14:617–634. doi:10.1007/s11252-011-0184-5 CrossRefGoogle Scholar
  36. Loridan T, Grimmond CSB (2012a) Characterization of energy flux partitioning in urban environments: links with surface seasonal properties. J Appl Meteorol Climatol 51:219–241. doi:10.1175/JAMC-D-11-038.1 CrossRefGoogle Scholar
  37. Loridan T, Grimmond CSB (2012b) Multi-site evaluation of an urban land-surface model: intra-urban heterogeneity, seasonality and parameter complexity requirements. Q J R Meteorol Soc 138(365):1094–1113. doi:10.1002/qj.963 CrossRefGoogle Scholar
  38. Loridan T, Grimmond CSB, Grossman-Clarke S, Chen F, Tewari M, Manning K, Martilli A, Kusaka H, Best M (2010) Trade-offs and responsiveness of the single-layer urban canopy parameterization in WRF: an offline evaluation using the MOSCEM optimization algorithm and field observations. Q J R Meteorol Soc 136:997–1019. doi:10.1002/qj.614 CrossRefGoogle Scholar
  39. Lynn BH, Carlson TN, Rosenzweig C, Goldberg R, Druyan L, Cox J, Gaffin S, Parshall L, Civerolo K (2009) A modification to the NOAH LSM to simulate heat mitigation strategies in the New York City metropolitan area. J Appl Meteorol Climatol 48:199–216CrossRefGoogle Scholar
  40. Masson V, Grimmond CSB, Oke TR (2002) Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from dry districts in two cities. J Appl Meteorol 41:1011–1026Google Scholar
  41. Miao S, Chen F (2008) Formation of horizontal convective rolls in urban areas. Atmos Res 89:298–304CrossRefGoogle Scholar
  42. Miao S, Chen F, LeMone MA, Tewari M, Li Q, Wang Y (2009) An observational and modeling study of characteristics of urban heat island and boundary layer structures in beijing. J Appl Meteorol Climatol 48(3):484–501. doi:10.1175/2008JAMC1909.1 CrossRefGoogle Scholar
  43. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682. doi:10.1029/97JD00237 Google Scholar
  44. NLCD (1992) http://www.epa.gov/mrlc/definitions.html. Accessed December 2010
  45. NLCD (2001) http://www.epa.gov/mrlc/definitions.html. Accessed December 2010
  46. Ordnance Survey (2010) Crown database right 2010. An Ordnance Survey/EDINA supplied service. http://www.ordnancesurvey.co.uk/oswebsite/. Assessed 13 Oct 2009
  47. Pleim JE (2007a) A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing. J Appl Meteorol Climatol 46:1383–1395CrossRefGoogle Scholar
  48. Pleim JE (2007b) A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: application and evaluation in a mesoscale meteorological model. J Appl Meteorol Climatol 46:1396–1409CrossRefGoogle Scholar
  49. Rosenzweig C, Solecki WD, Parshall L, Lynn B, Cox J, Goldberg R, Hodges S, Gaffin S, Slosberg RB, Savio P, Dunstan F, Watson M (2009) Mitigating New York City’s heat island. Bull Am Meteorol Soc 90:1297–1312CrossRefGoogle Scholar
  50. Salamanca F, Martilli A, Tewari M, Chen F (2011) A Study of the Urban Boundary Layer Using Different Urban Parameterizations and High-Resolution Urban Canopy Parameters with WRF. J Appl Meteorol Climatol 50:1107–1128CrossRefGoogle Scholar
  51. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 ppGoogle Scholar
  52. van Dijk A, Moene AF, De Bruin HAR (2004) The principles of surface flux physics: theory, practice and description of the ECPACK library. Wageningen UniversiteitGoogle Scholar
  53. Wang ZH, Bou-Zeid E, Au SK, Smith JA (2011) Analyzing the sensitivity of WRF’s single-layer urban canopy model to parameter uncertainty using advanced Monte Carlo simulation. J Appl Meteorol Climatol 50:1795–1814CrossRefGoogle Scholar
  54. Wang ZH, Bou-Zeid E, Smith JA (2012) Analyzing the sensitivity of WRF’s single-layer urban canopy model to parameter uncertainty using advanced Monte Carlo simulation. J Appl Meteorol Climatol 50:1795–1814CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Thomas Loridan
    • 1
    • 2
  • Fredrik Lindberg
    • 1
    • 3
  • Oriol Jorba
    • 4
  • Simone Kotthaus
    • 1
  • Susanne Grossman-Clarke
    • 5
    • 6
  • C. S. B. Grimmond
    • 1
  1. 1.Department of GeographyKing’s College LondonLondonUK
  2. 2.Department of Earth SciencesRisk Management Solutions, RMSLondonUK
  3. 3.Department of Earth SciencesUniversity of GothenburgGothenburgSweden
  4. 4.Barcelona Supercomputing Center (BSC)BarcelonaSpain
  5. 5.Global Institute of SustainabilityArizona State UniversityTempeUSA
  6. 6.Potsdam-Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations