Advertisement

Boundary-Layer Meteorology

, Volume 146, Issue 1, pp 65–80 | Cite as

Including the Drag Effects of Canopies: Real Case Large-Eddy Simulation Studies

  • Pierre Aumond
  • Valery Masson
  • Christine Lac
  • Benoit Gauvreau
  • Sylvain Dupont
  • Michel Berengier
Article

Abstract

We use the mesoscale meteorological model Meso-NH, taking the drag force of trees into account under stable, unstable and neutral conditions in a real case study. Large-eddy simulations (LES) are carried out for real orography, using a regional forcing model and including the energy and water fluxes between the surface (mostly grass with some hedges of trees) and the atmosphere calculated using a state-of-the-art soil-vegetation-atmosphere-transfer model. The formulation of the drag approach consists of adding drag terms to the momentum equation and subgrid turbulent kinetic energy dissipation, as a function of the foliage density. Its implementation in Meso-NH is validated using Advanced Regional Prediction System simulation results and measurements from Shaw and Schumann (Boundary-Layer Meteorol, 61(1):47–64, 1992). The simulation shows that the Meso-NH model successfully reproduces the flow within and above homogeneous covers. Then, real case studies are used in order to investigate the three different boundary layers in a LES configuration (resolution down to 2 m) over the “Lannemezan 2005” experimental campaign. Thus, we show that the model is able to reproduce realistic flows in these particular cases and confirm that the drag force approach is more efficient than the classical roughness approach in describing the flow in the presence of vegetation at these resolutions.

Keywords

Canopy Drag force approach Large-eddy simulation Meso-NH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aumond P, Gauvreau B, Lac C, Masson V, Bérengier M (2012) Numerical predictions for environmental acoustics: simulation of atmospheric fields and integration in a propagation model. Invited paper, Proc Acoustics 2012 (joint SFA/IOA international congress), Nantes (F), 23–27 AprilGoogle Scholar
  2. Bohrer G, Katul GG, Walko R, Avissar R (2009) Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Boundary-Layer Meteorol 132: 351–382CrossRefGoogle Scholar
  3. Bougeault P, Lacarrere P (1989) Parameterization of orography-induced turbulence in a mesobetascale model. Mon Weather Rev 117: 1872–1890CrossRefGoogle Scholar
  4. Büttner G, Feranec J, Jaffrain G, Mari L, Maucha G, Soukup T (2004) The CORINE land cover 2000 project. EARSeL eProc 3(3): 331–346Google Scholar
  5. Cassiani M, Katul G, Albertson J (2008) The effects of canopy leaf area index on airflow across forest edges: large-eddy simulation and analytical results. Boundary-Layer Meteorol 126(3): 433–460CrossRefGoogle Scholar
  6. Chamecki M, Meneveau C, Parlange M (2009) Large eddy simulation of pollen transport in the atmospheric boundary layer. J Aerosol Sci 40(3): 241–255CrossRefGoogle Scholar
  7. Chow F, Weigel A, Street R, Rotach M, Xue M (2006) High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments. J Appl Meteorol Climatol 45(1): 63–86CrossRefGoogle Scholar
  8. Cuxart J, Bougeault P, Redelsperger JL (2000a) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126: 1–30CrossRefGoogle Scholar
  9. Cuxart J, Yague C, Morales G, Terradellas E, Orbe J, Calvo J, Fernández A, Soler M, Infante C, Buenestado P et al (2000b) Stable atmospheric boundary-layer experiment in Spain (SABLES 98): a report. Boundary-Layer Meteorol 96(3): 337–370CrossRefGoogle Scholar
  10. Deardorff J (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18(4): 495–527CrossRefGoogle Scholar
  11. Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10: 249–270CrossRefGoogle Scholar
  12. Dupont S, Brunet Y (2008a) Edge flow and canopy structure: a large-eddy simulation study. Boundary-Layer Meteorol 126(1): 51–71CrossRefGoogle Scholar
  13. Dupont S, Brunet Y (2008b) Impact of forest edge shape on tree stability: a large-eddy simulation study. Forestry 81(3): 299CrossRefGoogle Scholar
  14. Dupont S, Brunet Y, Finnigan J (2008) Large-eddy simulation of turbulent flow over a forested hill: validation and coherent structure identification. Q J R Meteorol Soc 134(636): 1911–1929CrossRefGoogle Scholar
  15. Finnigan J (2000) Turbulence in plant canopies. J Fluid Mech 32(1): 519–571CrossRefGoogle Scholar
  16. Irvine M, Gardiner B, Hill M (1997) The evolution of turbulence across a forest edge. Boundary-Layer Meteorol 84(3): 467–496CrossRefGoogle Scholar
  17. Jiménez M, Cuxart J (2005) Large-eddy simulations of the stable boundary layer using the standard Kolmogorov theory: range of applicability. Boundary-Layer Meteorol 115(2): 241–261CrossRefGoogle Scholar
  18. Junker F, Gauvreau B, Bérengier M, Cremezi-Charlet C, Blanc-Benon P, Cotté B, Ecotière D (2006) Classification of relative influence of physical parameters for long range acoustic propagation. Invited paper to Internoise 2006, Honolulu (EUA), DecemberGoogle Scholar
  19. Kanda M, Hino M (1994) Organized structures in developing turbulent flow within and above a plant canopy, using a large eddy simulation. Boundary-Layer Meteorol 68(3): 237–257CrossRefGoogle Scholar
  20. Lafore J, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Hereil P, Mascart P, Pinty J, Redelsperger J, Richard E, de Arellano JVG (1998) The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann Geophys 16: 90–109CrossRefGoogle Scholar
  21. Masson V, Seity Y (2009) Including atmospheric layers in vegetation and urban offline surface schemes. J Appl Meteorol Climatol 48: 1377–1397CrossRefGoogle Scholar
  22. Mayhead G (1973) Some drag coefficients for British forest trees derived from wind tunnel studies. Agric Meteorol 12: 123–130CrossRefGoogle Scholar
  23. Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117(3): 536–549CrossRefGoogle Scholar
  24. Otte T, Lacser A, Dupont S, Ching J (2004) Implementation of an urban canopy parameterization in a mesoscale meteorological model. J Appl Meteorol 43(11): 1648–1665CrossRefGoogle Scholar
  25. Patton E, Shaw R, Judd M, Raupach M (1998) Large-eddy simulation of windbreak flow. Boundary-Layer Meteorol 87(2): 275–307CrossRefGoogle Scholar
  26. Patton E, Sullivan P, Davis K (2003) The influence of a forest canopy on top-down and bottom-up diffusion in the planetary boundary layer. Q J R Meteorol Soc 129(590): 1415–1434CrossRefGoogle Scholar
  27. Pimont F, Dupuy J, Scarella G, Caraglio Y, Morvan D (2006) Effects of small scale heterogeneity of vegetation on radiative transfer in forest fire. For Ecol Manag 234: S88CrossRefGoogle Scholar
  28. Poggi D, Katul G (2010) Evaluation of the turbulent kinetic energy dissipation rate inside canopies by zero- and level-crossing density methods. Boundary-Layer Meteorol 136: 1–15CrossRefGoogle Scholar
  29. Poggi D, Katul G, Albertson J (2004) Momentum transfer and turbulent kinetic energy budgets within a dense model canopy. Boundary-Layer Meteorol 111(3): 589–614CrossRefGoogle Scholar
  30. Shaw R, Schumann U (1992) Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol 61(1): 47–64CrossRefGoogle Scholar
  31. Shen S, Leclerc M (1997) Modelling the turbulence structure in the canopy layer. Agric For Meteorol 87(1): 3–25CrossRefGoogle Scholar
  32. Su H, Shaw R, Paw K, Moeng C, Sullivan P (1998) Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Boundary-Layer Meteorol 88(3): 363–397CrossRefGoogle Scholar
  33. Tomas S, Masson V (2006) A parameterization of third-order moments for the dry convective boundary layer. Boundary-Layer Meteorol 120(3): 437–454CrossRefGoogle Scholar
  34. Weigel A, Chow F, Rotach M, Street R, Xue M (2006) High-resolution large-eddy simulations of flow in a steep Alpine valley. Part II: Flow structure and heat budgets. J Appl Meteorol Climatol 45(1): 87–107CrossRefGoogle Scholar
  35. Weigel A, Chow F, Rotach M (2007) On the nature of turbulent kinetic energy in a steep and narrow Alpine valley. Boundary-Layer Meteorol 123(1): 177–199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Pierre Aumond
    • 1
  • Valery Masson
    • 1
  • Christine Lac
    • 1
  • Benoit Gauvreau
    • 2
  • Sylvain Dupont
    • 3
  • Michel Berengier
    • 2
  1. 1.Meteo France/CNRM/GMMEToulouse Cedex 1France
  2. 2.IfsttarBouguenais CedexFrance
  3. 3.INRA, UR1263 EPHYSEVillenave d’OrnonFrance

Personalised recommendations