Advertisement

Boundary-Layer Meteorology

, Volume 144, Issue 3, pp 379–400 | Cite as

Methods for Estimating Air–Sea Fluxes of CO2 Using High-Frequency Measurements

  • Maria NormanEmail author
  • Anna Rutgersson
  • Lise Lotte Sørensen
  • Erik Sahlée
Article

Abstract

The most direct method for flux estimation uses eddy covariance, which is also the most commonly used method for land-based measurements of surface fluxes. Moving platforms are frequently used to make measurements over the sea, in which case motion can disturb the measurements. An alternative method for flux estimation should be considered if the effects of platform motion cannot be properly corrected for. Three methods for estimating CO2 fluxes are studied here: the eddy-covariance, the inertial-dissipation, and the cospectral-peak methods. High-frequency measurements made at the land-based Östergarnsholm marine station in the Baltic Sea and measurements made from a ship during the Galathea 3 expedition are used. The Kolmogorov constant for CO2, used in the inertial-dissipation method, is estimated to be 0.68 and is determined using direct flux measurements made at the Östergarnsholm site. The cospectral-peak method, originally developed for neutral stratification, is modified to be applicable in all stratifications. With these modifications, the CO2 fluxes estimated using the three methods agree well. Using data from the Östergarnsholm site, the mean absolute error between the eddy-covariance and inertial-dissipation methods is 0.25 μmol  m−2 s−1. The corresponding mean absolute error between the eddy-covariance and cospectral-peak methods is 0.26 μmol m−2 s−1, while between the inertial-dissipation and cospectral-peak methods it is 0.14 μmol m−2 s−1.

Keywords

Baltic Sea measurements CO2 fluxes Cospectral-peak technique Eddy covariance Galathea 3 expedition Inertial-dissipation technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson RJ (1993) A study of wind stress and heat flux over the open ocean by the inertial-dissipation method. J Phys Oceanogr 23: 2153–2161CrossRefGoogle Scholar
  2. Burba GG, Anderson DJ, Xu L, McDermitt DK (2006) Correcting apparent off-season CO2 uptake due to surface heating of an open path gas analyser: progress report of ongoing study. In: Proceedings of the 27th annual conference of agricultural and forest meteorology, San Diego, CAGoogle Scholar
  3. Burba GG, McDermitt DK, Grelle A, Anderson DJ, Xu L (2008) Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Global Change Biol 14: 1–23CrossRefGoogle Scholar
  4. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189CrossRefGoogle Scholar
  5. Charnock H (1955) Wind stress on a water surface. Q J R Meteorol Soc 81: 639–640CrossRefGoogle Scholar
  6. Christiansen MB, Sørensen LL, Hasager CB, Nissen J (2007) Air–sea fluxes of CO2 from Galathea 3. Ship and satellite measurements. IGBP Global Chang Newsl 69(May):6Google Scholar
  7. Donelan MA, Drennan WM, Katsaros KB (1997) The air–sea momentum flux in wind sea and swell. J Phys Oceanogr 27: 2087–2099CrossRefGoogle Scholar
  8. Dupuis H, Taylor PK, Weill A, Katsaros K (1997) Inertial dissipation method applied to derive turbulent fluxes over the ocean during the surface of the ocean, fluxes and interactions with the atmosphere/Atlantic stratocumulus transition experiment (SOFIA/ASTEX) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogenities Oceaniques: Recherche Experimentale (SEMAPHORE) experiments with low to moderate wind speeds. J Geophys Res 102: 21115–21129CrossRefGoogle Scholar
  9. Dyer AJ, Hicks BB (1970) Flux–gradient relationships in the constant flux layer. Q J R Meteorol Soc 96: 715–721CrossRefGoogle Scholar
  10. Edson JB, Fairall CW, Mestayer PG, Larsen SE (1991) A study of the inertial-dissipation method for computing air-sea fluxes. J Geophys Res 96: 10689–10711CrossRefGoogle Scholar
  11. Edson JB, Zappa CJ, Ware JA, McGillis WR, Hare JE (2004) Scalar flux profile relationships over the open ocean. J Geophys Res 109: C08S09. doi: 10.1029/2003JC001960 CrossRefGoogle Scholar
  12. Fairall CW, Edson JB, Larsen SE, Mestayer PG (1990) Inertial-dissipation air–sea flux measurements: a prototype system using realtime spectral computitions. J Atmos Oceanic Technol 7: 425–453CrossRefGoogle Scholar
  13. Fairall CW, Bradley EF, Godfrey JS, Wick GA, Edson JB (1996) Cool-skin and warm-layer effects on sea surface temperature. J Geophys Res 101: 1295–1308CrossRefGoogle Scholar
  14. Fairall CW, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J Clim 16: 571–591CrossRefGoogle Scholar
  15. Foken T (2008) Micrometeorology. Springer, BerlinGoogle Scholar
  16. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  17. Fredrickson PA, Davidson KL, Edson JB (1997) A study of wind stress determination methods from a ship and an offshore tower. J Atmos Oceanic Technol 14: 822–834CrossRefGoogle Scholar
  18. Hicks BB, Dyer AJ (1972) The spectral density technique for determination of eddy fluxes. Q J R Meteorol Soc 98: 838–844CrossRefGoogle Scholar
  19. Hilligsøe KM, Richardson K, Bendtsen J, Sørensen LL, Nielsen TG, Lyngsgaard MM (2011) Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux. Deep-Sea Res I 58: 826–838CrossRefGoogle Scholar
  20. Ho DT, Law CS, Smith MJ, Schlosser P, Harvey M, Hill P (2006) Measurements of air–sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophys Res Lett 33: L16611. doi: 10.1029/2006GL026817 CrossRefGoogle Scholar
  21. Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42: 55–78CrossRefGoogle Scholar
  22. Högström U (1990) Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci 47: 1949–1972CrossRefGoogle Scholar
  23. Högström U, Sahlée E, Drennan WM, Kahma KK, Smedman A, Johansson C, Pettersson H, Rutgersson A, Tuomi L, Zhang F, Johansson M (2008) Momentum fluxes and wind gradients in the marine boundary layer: a multi-platform study. Boreal Environ Res 13: 475–502Google Scholar
  24. Iwata T, Yoshikawa K, Higuchi Y, Yamashita T, Kato S, Ohtaki E (2005) The spectral density technique for the determination of CO2 flux over the ocean. Boundary-Layer Meteorol 117(3): 511–523CrossRefGoogle Scholar
  25. Järvi L, Mammarella I, Eugster W, Ibrom A, Siivola E, Dellwik E, Keronen P, Burba G, Vesala T (2009) Comparison of net CO2 fluxes measured with open- and closed-path infrared gas analyzers in an urban complex environment. Boreal Environ Res 14: 499–514Google Scholar
  26. Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98: 563–589CrossRefGoogle Scholar
  27. Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11: 324–336CrossRefGoogle Scholar
  28. Larsen SE (1986) Hot-wire measurements of atmospheric turbulence near the ground. Risø-R-233. Risø National Laboratory, RoskildeGoogle Scholar
  29. Larsen SE, Hansen FA (1996) Micrometeorological estimation of fluxes of CO2, heat, humidity and momentum in the marine atmospheric surface layer during OMEX. In: OMEX final report, Subproject F (ULB, Brussels, Belgium), F, 1-F, 37Google Scholar
  30. Larsen SE, Yelland M, Taylor P, Jones ISF, Hasse L, Brown RA (2001) The measurements of surface stress. In: Jones ISF, Toba Y (eds) Wind stress over the ocean, 1st edn. Cambridge University Press, UK, pp 155–205CrossRefGoogle Scholar
  31. Launiainen J (1995) Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux-profile studies. Boundary-Layer Meteorol 76: 165–179CrossRefGoogle Scholar
  32. Liebethal C, Foken T (2003) On the significance of the Webb correction to fluxes. Boundary-Layer Meteorol 109: 99–106CrossRefGoogle Scholar
  33. Mahrt L, Lee X, Black A, Neumann H, Staebler RM (2000) Nocturnal mixing in a forest subcanopy. Agric Forest Meteorol 101: 67–78CrossRefGoogle Scholar
  34. McBean GA, Miyake M (1972) Turbulent transfer mechanisms in the atmospheric surface-layer. Q J R Meteorol Soc 98: 383–398CrossRefGoogle Scholar
  35. Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Uppstill-Goddard RC (2000) In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem Cycles 14: 373–387CrossRefGoogle Scholar
  36. Ohtaki E (1982) The Kolmogorov constant for carbon dioxide in the atmospheric surface layer over a paddy field. Boundary-Layer Meteorol 23(2): 153–159CrossRefGoogle Scholar
  37. Pond S, Phelps GT, Paquin JE, McBean G, Stewart RW (1971) Measurements of the turbulent fluxes of momentum, moisture and sensible heat over the ocean. J Atmos Sci 28: 901–917CrossRefGoogle Scholar
  38. Rutgersson A, Smedman A (2010) Enhanced air–sea CO2 transfer due to water-side convection. J Mar Syst 80: 125–134CrossRefGoogle Scholar
  39. Rutgersson A, Smedman A, Omstedt A (2001) Measured and simulated latent and sensible heat fluxes at two marine sites in the Baltic Sea. Boundary-Layer Meteorol 99: 53–84CrossRefGoogle Scholar
  40. Rutgersson A, Norman M, Schneider B, Pettersson H, Sahlée E (2008) The annual cycle of carbon dioxide and parameters influencing the air–sea carbon exchange in the Baltic Proper. J Mar Syst 74(1–2): 381–394CrossRefGoogle Scholar
  41. Rutgersson A, Smedman A, Sahlée E (2011) Oceanic convective mixing and the impact on air–sea gas transfer velocity. Geophys Res Lett 38: L02602CrossRefGoogle Scholar
  42. Sahlée E, Smedman A, Rutgersson A, Högstrom U (2008) Spectra of CO2 and water vapour in the marine atmospheric surface layer. Boundary-Layer Meteorol 126(2): 279–295CrossRefGoogle Scholar
  43. Schmitt KF, Friehe CA, Gibson CH (1979) Structure of marine surface layer turbulence. J Atmos Sci 36: 602–618CrossRefGoogle Scholar
  44. Semedo A, Sušelj K, Rutgersson A, Sterl A (2010) A global view on the wind sea and swell climate and variability from ERA-40. J Clim 24: 1461–1479CrossRefGoogle Scholar
  45. Shao Y (1995) Correction of turbulent wind measurements contaminated by irregular motion of a ship. TOGA-COARE project, technical report 70. CSIRO, Centre for Environmental MechanicsGoogle Scholar
  46. Sjöblom A, Smedman A (2002) The turbulent kinetic energy budget in the marine atmospheric surface layer. J Geophys Res 107(C10): 3142CrossRefGoogle Scholar
  47. Sjöblom A, Smedman A (2003) Vertical structure in the marine atmospheric boundary layer and its implication for the inertial dissipation method. Boundary-Layer Meteorol 109: 1–25CrossRefGoogle Scholar
  48. Sjöblom A, Smedman A (2004) Comparison between eddy-correlation and inertial dissipation methods in the marine atmospheric surface layer. Boundary-Layer Meteorol 110(2): 141–164CrossRefGoogle Scholar
  49. Smedman A, Högström U, Sjöblom A (2003) A note on velocity spectra in the marine boundary layer. Boundary-Layer Meteorol 109: 27–48CrossRefGoogle Scholar
  50. Smith SD (1988) Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J Geophys Res 93: 15467–15472CrossRefGoogle Scholar
  51. Smith SD, Anderson RJ (1984) Spectra of humidity, temperature and wind over the sea at Sable Island, Nova Scotia. J Geophys Res 91: 10529–10532CrossRefGoogle Scholar
  52. Sørensen LL, Larsen SE (2010) Atmosphere–surface fluxes of CO2 using spectral techniques. Boundary-Layer Meteorol 136: 59–81CrossRefGoogle Scholar
  53. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Sabine C, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Körtzinger A, Steinhoff T, Hoppema M, de Baar HJW, Wong CS, Delille B, Bates NR (2009) Climatological mean and decadal changes in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res II 56: 554–577CrossRefGoogle Scholar
  54. Verma S, Anderson D (1984) Kolmogorov constants for CO2, wind velocity, air-temperature, and humidity fluctuations over a crop surface. Boundary-Layer Meteorol 28: 161–167CrossRefGoogle Scholar
  55. Vickers D, Mahrt L (2006) Contrasting mean vertical motion from tilt correction methods and mass continuity. Agric Forest Meteorol 138: 93–103CrossRefGoogle Scholar
  56. Wanninkhof R (1992) Relationship between wind-speed and gas-exchange over the ocean. J Geophys Res 97: 7373–7382CrossRefGoogle Scholar
  57. Wanninkhof R, McGillis W (1999) A cubic relationship between air–sea CO2 exchange and wind speed. Geophys Res Lett 26: 1889–1892CrossRefGoogle Scholar
  58. Wanninkhof R, Asher WE, Ho DT, Sweeny C, McGillis W (2009) Advances in quantifying air–sea gas exchange and environmental forcing. Annu Rev Mar Sci 1: 213–244CrossRefGoogle Scholar
  59. Watson AJ, Upstill-Goddard RC, Lis PS (1991) Air–sea exchange in rough and stormy seas, measured by a dual tracer technique. Nature 349: 145–147CrossRefGoogle Scholar
  60. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106: 85–100CrossRefGoogle Scholar
  61. Weiss A, Kuss J, Peters G, Schneider B (2007) Evaluating transfer velocity–wind speed relationship using a long-term series of direct eddy covariance CO2 flux measurements. J Mar Syst 66: 130–139CrossRefGoogle Scholar
  62. Woolf D (2005) Parametrization of gas transfer velocities and sea-state-dependent wave breaking. Tellus B 57(2): 87–94CrossRefGoogle Scholar
  63. Yelland MJ, Taylor PK (1996) Wind stress measurements fom the open ocean. J Phys Oceanogr 26: 541–558CrossRefGoogle Scholar
  64. Zhao D, Toba Y, Suzuki Y, Komori S (2003) Effect of wind waves on air–sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter. Tellus B 55(2): 478–487CrossRefGoogle Scholar
  65. Zilitinkevich SS, Chalikov DV (1968) Determining the universal wind-velocity and temperature profiles in the atmospheric boundary layer. Izv Atmos Oceanic Phys 4: 294–302Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Maria Norman
    • 1
    Email author
  • Anna Rutgersson
    • 1
  • Lise Lotte Sørensen
    • 2
  • Erik Sahlée
    • 1
  1. 1.Department of Earth SciencesUppsala UniversityUppsalaSweden
  2. 2.Department of Environmental ScienceAarhus UniversityRoskildeDenmark

Personalised recommendations