Boundary-Layer Meteorology

, Volume 145, Issue 3, pp 439–468 | Cite as

A Double-Canyon Radiation Scheme for Multi-Layer Urban Canopy Models

  • Sebastian SchubertEmail author
  • Susanne Grossman-Clarke
  • Alberto Martilli


We develop a double-canyon radiation scheme (DCEP) for urban canopy models embedded in mesoscale numerical models based on the Building Effect Parametrization (BEP). The new scheme calculates the incoming and outgoing longwave and shortwave radiation for roof, wall and ground surfaces for an urban street canyon characterized by its street and building width, canyon length, and the building height distribution. The scheme introduces the radiative interaction of two neighbouring urban canyons allowing the full inclusion of roofs into the radiation exchange both inside the canyon and with the sky. In contrast to BEP, we also treat direct and diffuse shortwave radiation from the sky independently, thus allowing calculation of the effective parameters representing the urban diffuse and direct shortwave radiation budget inside the mesoscale model. Furthermore, we close the energy balance of incoming longwave and diffuse shortwave radiation from the sky, so that the new scheme is physically more consistent than the BEP scheme. Sensitivity tests show that these modifications are important for urban regions with a large variety of building heights. The evaluation against data from the Basel Urban Boundary Layer Experiment indicates a good performance of the DCEP when coupled with the regional weather and climate model COSMO-CLM.


Mesoscale modelling Radiation energy balance Urban canopy parametrization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New York, 1046 ppGoogle Scholar
  2. Brown M (2000) Urban parameterizations for mesoscale meteorological models. In: Boybeyi Z (ed) Mesoscale atmospheric dispersion. WIT Press, London, pp 193–255Google Scholar
  3. Burian S, Augustus N, Jeyachandran I, Brown M (2008) National Building Statistics Database. Tech. Rep. 2, University of Utah, Department of Civil and Environmental Engineering and Los Alamos National Laboratory, 78 ppGoogle Scholar
  4. Büttner G (2007) CLC2006 technical guidelines. Tech. Rep. 17, European Environment Agency, 66 ppGoogle Scholar
  5. Ching J, Brown M, McPherson T, Burian S, Chen F, Cionco R, Hanna A, Hultgren T, Sailor D, Taha H, Williams D (2009) National urban database and access portal tool. Bull Am Meteorol Soc 90(8): 1157–1168CrossRefGoogle Scholar
  6. Christen A, Vogt R (2004) Energy and radiation balance of a central European city. Int J Climatol 24(11): 1395–1421CrossRefGoogle Scholar
  7. Cotton W, Pielke R (2007) Human impacts on weather and climate, 2nd edn. Cambridge University Press, New York, 304 ppGoogle Scholar
  8. Doms G, Förstner J, Heise E, Herzog HJ, Mironov D, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz JP, Vogel G (2011) A description of the nonhydrostatic regional COSMO model. Deutscher Wetterdienst, Offenbach, 154 ppGoogle Scholar
  9. Eaton JW, Bateman D, Hauberg S (2008) GNU Octave Manual Version 3. Network Theory Limited, Manchester, 568 ppGoogle Scholar
  10. Grimmond CSB, Blackett M, Best MJ, Barlow J, Baik JJ, Belcher SE, Bohnenstengel SI, Calmet I, Chen F, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff ES, Lee SH, Loridan T, Martilli A, Masson V, Miao S, Oleson K, Pigeon G, Porson A, Ryu YH, Salamanca F, Shashua-Bar L, Steeneveld GJ, Tombrou M, Voogt JA, Young D, Zhang N (2010) The international urban energy balance models comparison project: first results from Phase 1. J Appl Meteorol Climatol 49(6): 1268–1292CrossRefGoogle Scholar
  11. Grimmond CSB, Blackett M, Best MJ, Baik JJ, Belcher SE, Beringer J, Bohnenstengel SI, Calmet I, Chen F, Coutts A, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry M, Kanda M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff ES, Lee SH, Loridan T, Martilli A, Masson V, Miao S, Oleson K, Ooka R, Pigeon G, Porson A, Ryu YH, Salamanca F, Steeneveld G, Tombrou M, Voogt JA, Young DT, Zhang N (2011) Initial results from Phase 2 of the international urban energy balance model comparison. Int J Climatol 31(2): 244–272CrossRefGoogle Scholar
  12. Hamdi R, Schayes G (2007) Validation of Martilli’s urban boundary layer scheme with measurements from two mid-latitude European cities. Atmos Chem Phys 7(17): 4513–4526CrossRefGoogle Scholar
  13. Hamilton DC, Morgan WR (1952) Radiant-interchange configuration factors. National Advisory Committee For Aeronautics, Washington, No. 2836, 110 ppGoogle Scholar
  14. Kabat P (2004) Vegetation, water, humans and the climate: a new perspective on an interactive system. Springer, Berlin, pp 566Google Scholar
  15. Lee SH, Park SU (2008) A vegetated urban canopy model for meteorological and environmental modelling. Boundary-Layer Meteorol 126: 73–102CrossRefGoogle Scholar
  16. Loridan T, Grimmond CSB (2011) Multi-site evaluation of an urban land-surface model: intra-urban heterogeneity, seasonality and parameter complexity requirements. Q J R Meteorol Soc, in press. doi: 10.1002/qj-963
  17. Mahmood R, Pielke RA Sr., Hubbard KG, Niyogi D, Bonan G, Lawrence P, Baker B, McNider R, McAlpine C, Etter A et al (2010) Impacts of land use land cover change on climate and future research priorities. Bull Am Meteorol Soc 91(1): 37–46CrossRefGoogle Scholar
  18. Martilli A (2007) Current research and future challenges in urban mesoscale modelling. Int J Climatol 27(14): 1909–1918CrossRefGoogle Scholar
  19. Martilli A (2009) On the derivation of input parameters for urban canopy models from urban morphological datasets. Boundary-Layer Meteorol 130(2): 301–306CrossRefGoogle Scholar
  20. Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parameterisation for mesoscale models. Boundary-Layer Meteorol 104(2): 261–304CrossRefGoogle Scholar
  21. Martilli A, Roulet YA, Junier M, Kirchner F, Rotach MW, Clappier A (2003) On the impact of urban surface exchange parameterisations on air quality simulations: the Athens case. Atmos Environ 37(30): 4217–4231CrossRefGoogle Scholar
  22. Martine G, Deligiorgis D, Fuersich C, Leon L, Odelius A (2007) State of the World Population 2007: unleashing the potential of urban growth. Report, United Nations Population Fund (UNFPA), 99 ppGoogle Scholar
  23. Masson V (2000) A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorol 94: 357–397CrossRefGoogle Scholar
  24. Masson V (2006) Urban surface modeling and the meso-scale impact of cities. Theor Appl Climatol 84(1): 35–45CrossRefGoogle Scholar
  25. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20(4): 851–875CrossRefGoogle Scholar
  26. Pielke RA, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002) The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos Trans A 360(1797): 1705CrossRefGoogle Scholar
  27. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77, 2nd edn. Cambridge University Press, UK, 992 ppGoogle Scholar
  28. Raschendorfer M, Simmer C, Gross P (2003) Parameterisation of turbulent transport in the atmosphere. In: Dynamics of multiscale earth systems. Lecture notes in earth sciences, vol 97. Springer, Berlin, pp 167–185Google Scholar
  29. Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120(2): 303–325CrossRefGoogle Scholar
  30. Rockel B, Castro CL, Pielke RA Sr., von Storch H, Leoncini G (2008) Dynamical downscaling: assessment of model system dependent retained and added variability for two different regional climate models. J Geophys Res 113: D21,107CrossRefGoogle Scholar
  31. Rotach MW, Gryning SE, Batchvarova E, Christen A, Vogt R (2004) Pollutant dispersion close to an urban surface–the BUBBLE tracer experiment. Meteorol Atmos Phys 87(1): 39–56CrossRefGoogle Scholar
  32. Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Feddersen B, Gryning SE, Martucci G, Mayer H, Mitev V, Oke TR, Parlow E, Richner H, Roth M, Roulet YA, Ruffieux D, Salmond JA, Schatzmann M, Voogt JA (2005) BUBBLE–an urban boundary layer meteorology project. Theor Appl Climatol 81(3): 231–261CrossRefGoogle Scholar
  33. Salamanca F, Martilli A (2010) A new building energy model coupled with an urban canopy parameterization for urban climate simulations—part II. Validation with one dimension off-line simulations. Theor Appl Climatol 99: 345–356CrossRefGoogle Scholar
  34. Salamanca F, Krpo A, Martilli A, Clappier A (2010) A new building energy model coupled with an urban canopy parameterization for urban climate simulations—part I. formulation, verification, and sensitivity analysis of the model. Theor Appl Climatol 99: 331–344CrossRefGoogle Scholar
  35. Smiatek G, Rockel B, Schattler U (2008) Time invariant data preprocessor for the climate version of the COSMO model (COSMO-CLM). Meteorol Z 17(4): 395–405CrossRefGoogle Scholar
  36. Sparrow EM, Cess RD (1978) Radiation heat transfer, augmented edition. Hemisphere Publishing, Washington, 366 ppGoogle Scholar
  37. Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82(1): 75–96CrossRefGoogle Scholar
  38. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8): 1779–1800CrossRefGoogle Scholar
  39. Zhang CL, Chen F, Miao SG, Li QC, Xia XA, Xuan CY (2009) Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J Geophys Res 114(D2): D02116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sebastian Schubert
    • 1
    Email author
  • Susanne Grossman-Clarke
    • 1
  • Alberto Martilli
    • 2
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Research Centre for EnergyEnvironment and Technology, CIEMATMadridSpain

Personalised recommendations