Boundary-Layer Meteorology

, Volume 144, Issue 1, pp 83–112 | Cite as

Towards a Validation of Scintillometer Measurements: The LITFASS-2009 Experiment

  • Frank Beyrich
  • Jens Bange
  • Oscar K. Hartogensis
  • Siegfried Raasch
  • Miranda Braam
  • Daniëlle van Dinther
  • Doreen Gräf
  • Bram van Kesteren
  • Aline C. van den Kroonenberg
  • Björn Maronga
  • Sabrina Martin
  • Arnold F. Moene
Article

Abstract

Scintillometry has been increasingly used over the last decade for the experimental determination of area-averaged turbulent fluxes at a horizontal scale of a few kilometres. Nevertheless, a number of assumptions in the scintillometer data processing and interpretation still call for a thorough evaluation, in particular over heterogeneous terrain. Moreover, a validation of the path-averaged structure parameters derived from scintillometer data (and forming the basis for the flux calculations) by independent measurements is still missing. To achieve this, the LITFASS-2009 field campaign has been performed around the Meteorological Observatory Lindenberg – Richard-Aßmann-Observatory of the German Meteorological Service (DWD) in July 2009. The experiment combined tower-based in-situ turbulence measurements, field-scale laser scintillometers, long-range optical (large-aperture) and microwave scintillometers, and airborne turbulence measurements using an automatically operating unmanned aircraft. The paper describes the project design and strategy, and discusses first results. Daytime near-surface values of the temperature structure parameter, \({C_{T}^{2}}\), over different types of farmland differ by more than one order of magnitude in their dependence on the type and status of the vegetation. Considerable spatial variability in \({C_{T}^{2}}\) was also found along the flight legs at heights between 50 and 100 m. However, it appeared difficult to separate the effects of heterogeneity from the temporal variability of the turbulence fields. Aircraft measurements and scintillometer data agreed in magnitude with respect to the temporal variation of the path-averaged \({C_{T}^{2}}\) values during the diurnal cycle. The decrease of \({C_{T}^{2}}\) with height found from the scintillometer measurements close to the surface and at 43 m under daytime convective conditions corresponds to free-convection scaling, whereas the aircraft measurements at 54 and 83 m suggest a different behaviour.

Keywords

Heterogeneous terrain LITFASS Scintillometer Temperature structure parameter Turbulence Unmanned aircraft 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen RG, Pereira LS, Howell TA, Jensen ME (2011) Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric Water Manag 98: 899–920CrossRefGoogle Scholar
  2. Andreas EL (1989) The refractive-index structure parameter, \({{\rm C}_{{\rm n}}^{2} }\), for a year over the Frozen Beaufort Sea. Radio Sci 24: 667–679CrossRefGoogle Scholar
  3. Asanuma J, Iemoto K (2007) Measurements of regional sensible heat flux over mongolian grassland using large aperture scintillometer. J Hydrol 333: 58–67CrossRefGoogle Scholar
  4. Bange J, Beyrich F, Engelbart DAM (2002) Airborne measurements of turbulent fluxes during litfass-98: comparison with ground measurements and remote sensing in a case study. Theor Appl Climatol 73: 35–51CrossRefGoogle Scholar
  5. Bange J, Zittel P, Spiess T, Uhlenbrock J, Beyrich F (2006a) A new method for the determination of area-averaged turbulent surface fluxes from low-level flights using inverse models. Boundary-Layer Meteorol 119: 527–561CrossRefGoogle Scholar
  6. Bange J, Spiess T, Herold M, Beyrich F, Hennemuth B (2006b) Turbulent fluxes from helipod flights above quasi-homogeneous patches within the LITFASS area. Boundary-Layer Meteorol 121: 127–151CrossRefGoogle Scholar
  7. Beyrich F, Mengelkamp HT (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment—an overview. Boundary-Layer Meteorol 121: 5–32CrossRefGoogle Scholar
  8. Beyrich F, De Bruin HAR, Meijninger WML, Schipper JW, Lohse H (2002a) Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Boundary-Layer Meteorol 105: 85–97CrossRefGoogle Scholar
  9. Beyrich F, Herzog HJ, Neisser J (2002b) The LITFASS project of DWD and the LITFASS-98 experiment: the project strategy and the experimental setup. Theor Appl Climatol 73: 3–18CrossRefGoogle Scholar
  10. Beyrich F, Kouznetsov RD, Leps JP, Lüdi A, Meijninger WML, Weisensee U (2005) Structure parameters of temperature and humidity from simultaneous eddy-covariance and scintillometer measurements. Meteorol Z 14: 641–649CrossRefGoogle Scholar
  11. Beyrich F, Leps JP, Mauder M, Bange J, Foken T, Huneke S, Lohse H, Lüdi A, Meijninger WML, Mironov D, Weisensee U, Zittel P (2006) Area-averaged surface fluxes over the LITFASS region based on eddy-covariance measurements. Boundary-Layer Meteorol 121: 33–65CrossRefGoogle Scholar
  12. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189CrossRefGoogle Scholar
  13. Cammalleri C, Agnese C, Ciraolo G, Minacapilli M, Provenzano G, Rallo G (2010) Actual evapotranspiration assessment by means of a coupled energy/hydrologic balance model: validation over an olive grove by means of scintillometry and measurements of soil water content. J Hydrol 392: 70–82CrossRefGoogle Scholar
  14. Chandrapala L, Wimalasuriya M (2003) Satellite Measurements supplemented with meteorological data to operationally estimate evaporation in Sri Lanka. Agric Water Manag 58: 89–107CrossRefGoogle Scholar
  15. Cheinet S, Siebesma AP (2009) Variability of local structure parameters in the convective boundary layer. J Atmos Sci 66: 1002–1017CrossRefGoogle Scholar
  16. Clifford SF (1971) Temporal-frequency spectra for a spherical wave propagating through atmospheric turbulence. J Opt Soc Am 61: 1285–1292CrossRefGoogle Scholar
  17. De Bruin HAR, Kohsiek W, Vanden Hurk BJJM (1993) A verification of some methods to determine the fluxes of momentum, sensible heat, and water-vapour using standard-deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63: 231–257CrossRefGoogle Scholar
  18. De Bruin HAR, Vanden Hurk B, Kohsiek W (1995) The scintillation method tested over a dry vineyard area. Boundary-Layer Meteorol 76: 25–40CrossRefGoogle Scholar
  19. De Bruin HAR, VanDen Hurk B, Kroon LJM (1999) On the temperature-humidity correlation and similarity. Boundary-Layer Meteorol 93: 453–468CrossRefGoogle Scholar
  20. De Bruin HAR, Meijninger WML, Smedman ASM, Magnusson M (2002) Displaced-beam small aperture scintillometer test. Part I: the wintex data-set. Boundary-Layer Meteorol 105: 129–148CrossRefGoogle Scholar
  21. Ek MB, Holtslag AAM (2005) Evaluation of a land-surface scheme at Cabauw. Theor Appl Climatol 80: 213–227CrossRefGoogle Scholar
  22. Evans JG (2009) Long-path scintillomtery over complex terrain to measure area-averaged sensible and latent heat fluxes. PhD Thesis, The University of Reading, 176 ppGoogle Scholar
  23. Ezzahar J, Chehbouni G, Hoedjes JCB, Chehbouni A (2007a) On the application of scintillometry over heterogeneous grids. J Hydrol 334: 493–501CrossRefGoogle Scholar
  24. Ezzahar J, Chehbouni G, Hoedjes JCB, Er-Raki S, Chehbouni A, Boulet G, Bonnefond JM, De Bruin HAR (2007b) The use of the scintillation technique for monitoring seasonal water consumption of olive orchards in a semi-arid region. Agric Water Manag 89: 173–184CrossRefGoogle Scholar
  25. Ezzahar J, Chehbouni A, Hoedjes J, Ramier D, Boulain N, Boubkraoui S, Cappelaere B, Descroix L, Mougenot B, Timouk F (2009) Combining scintillometer measurements and an aggregation scheme to estimate area-averaged latent heat flux during the AMMA experiment. J Hydrol 375: 217–226CrossRefGoogle Scholar
  26. Foken T, Kretschmer D (1990) Stability dependence of the temperature structure parameter. Boundary-Layer Meteorol 53: 185–189CrossRefGoogle Scholar
  27. Green AE, Green SR, Astill MS, Caspari HW (2000) Estimating latent heat flux from a vineyard using scintillometry. Terr Atmos Ocean Sci 11: 525–542Google Scholar
  28. Green AE, Astill MS, McAneney KJ, Nieveen JP (2001) Path-averaged surface fluxes determined from infrared and microwave scintillometers. Agric For Meteorol 109: 233–247CrossRefGoogle Scholar
  29. Gryning SE, Halldin S, Lindroth A (2002) Area averaging of land surface-atmosphere fluxes in NOPEX: challenges, results and perspectives. Boreal Environ Res 7: 379–387Google Scholar
  30. Hartogensis OK, De Bruin HAR (2005) Monin–Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116: 253–276CrossRefGoogle Scholar
  31. Hartogensis OK, De Bruin HAR, Vande Wiel BJH (2002) Displaced-beam small aperture scintillometer test. Part II: CASES-99 stable boundary-layer experiment. Boundary-Layer Meteorol 105: 149–176CrossRefGoogle Scholar
  32. Hill RJ (1997) Algorithms for obtaining atmospheric surface-layer fluxes from scintillation measurements. J Atmos Ocean Technol 14: 456–467CrossRefGoogle Scholar
  33. Hill RJ, Clifford SF, Lawrence RS (1980) Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure-fluctuations. J Opt Soc Am 70: 1192–1205CrossRefGoogle Scholar
  34. Hill RJ, Bohlander RA, Clifford SF, McMillan RW, Priestley JT, Schoenfeld WP (1988) Turbulence-induced millimeter-wave scintillation compared with micrometeorological measurements. IEEE Trans Geosci Remote Sens 26: 330–342CrossRefGoogle Scholar
  35. Hoedjes JCB, Zuurbier RM, Watts CJ (2002) Large aperture scintillometer used over a homogeneous irrigated area, partly affected by regional advection. Boundary-Layer Meteorol 105: 99–117CrossRefGoogle Scholar
  36. Hoedjes JCB, Chehbouni A, Ezzahar J, Escadafal R, De Bruin HAR (2007) Comparison of large aperture scintillometer and eddy covariance measurements: can thermal infrared data be used to capture footprint-induced differences?. J Hydrometeorol 8: 144–159CrossRefGoogle Scholar
  37. Holtslag AAM, Duynkerke PG (eds) (1998) Clear and cloudy boundary layers. Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, 372 ppGoogle Scholar
  38. Kleissl J, Gomez J, Hong SH, Hendrickx JMH, Rahn T, Defoor WL (2008) Large aperture scintillometer intercomparison study. Boundary-Layer Meteorol 128: 133–150CrossRefGoogle Scholar
  39. Kleissl J, Hong SH, Hendrickx JMH (2009a) New Mexico scintillometer network: supporting remote sensing and hydrologic and meteorological models. Bull Am Meteorol Soc 90: 207–218CrossRefGoogle Scholar
  40. Kleissl J, Watts CJ, Rodriguez JC, Naif S, Vivoni ER (2009b) Scintillometer intercomparison study continued. Boundary-Layer Meteorol 130: 437–443CrossRefGoogle Scholar
  41. Kohsiek W (1982) Measuring \({{\rm C}_{{\rm T}}^{2}}\), \({{\rm C}_{{\rm Q}}^{2}}\), and CTQ in the unstable surface-layer, and relations to the vertical fluxes of heat and moisture. Boundary-Layer Meteorol 24: 89–107CrossRefGoogle Scholar
  42. Kohsiek W, Herben M (1983) Evaporation derived from optical and radiowave scintillation. Appl Opt 22: 2566–2570CrossRefGoogle Scholar
  43. Kohsiek W, Meijninger WML, Moene AF, Heusinkveld BG, Hartogensis OK, Hillen W, De Bruin HAR (2002) An extra-large aperture scintillometer for long range applications. Boundary-Layer Meteorol 105: 119–127CrossRefGoogle Scholar
  44. Kohsiek W, Meijninger WML, De Bruin HAR, Beyrich F (2006) Saturation of the large aperture scintillometer. Boundary-Layer Meteorol 121: 111–126CrossRefGoogle Scholar
  45. Lagouarde JP, Jacob J, Gu XF, Olioso A, Bonnefond JM, Kerr Y, McAneney KJ, Irvine M (2002) Spatialization of sensible heat flux over a heterogeneous landscape. Agronomie 22: 627–633CrossRefGoogle Scholar
  46. Lagouarde JP, Irvine M, Bonnefond JM, Grimmond CSB, Long N, Oke TR, Salmond JA, Offerle B (2006) Monitoring the sensible heat flux over urban areas using large aperture scintillometry: case study of Marseille city during the escompte experiment. Boundary-Layer Meteorol 118: 449–476CrossRefGoogle Scholar
  47. Lee, X, Massman, W, Law, B (eds) (2004) Handbook of micrometeorology. Kluwer, Dordrecht/Boston/London, p 250Google Scholar
  48. LeMone MA, Chen F, Alfieri JG, Tewari M, Geerts B, Miao Q, Grossman RL, Coulter RL (2007) Influence of land cover and soil moisture on the horizontal distribution of sensible and latent heat fluxes in Southeast Kansas During IHOP-2002 and CASES-97. J Hydrometeorol 8: 68–87CrossRefGoogle Scholar
  49. Lüdi A, Beyrich F, Mätzler C (2005) Determination of the turbulent temperature–humidity correlation from scintillometric measurements. Boundary-Layer Meteorol 117: 525–550CrossRefGoogle Scholar
  50. Mahrt L, Vickers D, Sun JL, McCaughey JH (2001) Calculation of area-averaged fluxes: application to BOREAS. J Appl Meteorol 40: 915–920CrossRefGoogle Scholar
  51. Martin S, Bange J, Beyrich F (2011) Meteorological profiling of the lower troposphere using the research UAV “M2AV Carolo”. Atmos Meas Tech 4: 705–716CrossRefGoogle Scholar
  52. McAneney KJ, Green AE, Astill MS (1995) Large-aperture scintillometry—the homogeneous case. Agric For Meteorol 76: 149–162CrossRefGoogle Scholar
  53. Meijninger WML, de Bruin HAR (2000) The sensible heat fluxes over irrigated areas in Western Turkey determined with a large aperture scintillometer. J Hydrol 229: 42–49CrossRefGoogle Scholar
  54. Meijninger WML, Moene A, Hartogensis OK, De Bruin HAR, Heusinkveld BG (2000) Large-Aperture Scintillometer: User Manual and Technical Information. Wageningen University, Wageningen, The Netherlands, 63 ppGoogle Scholar
  55. Meijninger WML, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002a) Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface—Flevoland field experiment. Boundary-Layer Meteorol 105: 37–62CrossRefGoogle Scholar
  56. Meijninger WML, Green AE, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002b) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface—Flevoland field experiment. Boundary-Layer Meteorol 105: 63–83CrossRefGoogle Scholar
  57. Meijninger WML, Beyrich F, Lüdi A, Kohsiek W, De Bruin HAR (2006) Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—a contribution to LITFASS-2003. Boundary-Layer Meteorol 121: 89–110CrossRefGoogle Scholar
  58. Moene AF (2003) Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation. Boundary-Layer Meteorol 107: 635–653CrossRefGoogle Scholar
  59. Moene AF, Meijninger WML, Hartogensis OK, Heusinkveld BG, De Bruin HAR (2005) The Effect of Finite Accuracy in the Manufacturing of Large-Aperture Scintillometers Wageningen University, Wageningen, The Netherlands, 20 ppGoogle Scholar
  60. Moene AF, Meijninger WML, Kohsiek W, Gioli B, Miglietta F, Bosveld F (2006a) Validation of fluxes of an extra large aperture scintillometer at Cabauw using sky arrow aircraft flux measurements. In: Proceedings of 17th symposium on boundary layers and turbulence. American Meteorological Society, San Diego, CA, 22–25 May 2006Google Scholar
  61. Moene AF, Schüttemeyer D, Hartogensis OK (2006b) Scalar similarity functions: the influence of surface heterogeneity and entrainment. In: Proceedings of 17th symposium on boundary layers and turbulence. American Meteorological Society, San Diego, CA, 22–25 May 2006Google Scholar
  62. Moene AF, Michels BI, Holtslag AAM (2006c) Scaling variances of scalars in a convective boundary layer under different entrainment regimes. Boundary-Layer Meteorol 120: 257–274CrossRefGoogle Scholar
  63. Neisser J, Adam W, Beyrich F, Leiterer U, Steinhagen H (2002) Atmospheric boundary layer monitoring at the meteorological observatory lindenberg as a part of the “Lindenberg column”: facilities and selected results. Meteorol Z 11: 241–253CrossRefGoogle Scholar
  64. Peltier LJ, Wyngaard JC (1995) Structure function parameters in the convective boundary layer from large-eddy simulation. J Atmos Sci 52: 3641–3660CrossRefGoogle Scholar
  65. Raasch S, Schröter M (2001) PALM—a large-eddy simulation model performing on massively parallel computers. Meteorol Z 10: 363–372CrossRefGoogle Scholar
  66. Roth M, Salmond JA, Satyanarayana ANV (2006) Methodological considerations regarding the measurement of turbulent fluxes in the urban roughness sublayer: the role of scintillometery. Boundary-Layer Meteorol 121: 351–375CrossRefGoogle Scholar
  67. Spieß T, Bange J, Buschmann M, Vörsmann P (2007) First application of the meteorological mini-UAV M2AV’. Meteorol Z 16: 159–169CrossRefGoogle Scholar
  68. Tatarskii VI (1961) Wave propagation in a turbulent medium. McGraw-Hill Book Company Inc., New York, 285 ppGoogle Scholar
  69. Thiermann V, Grassl H (1992) The measurement of turbulent surface-layer fluxes by use of bi-chromatic scintillation. Boundary-Layer Meteorol 58: 367–389CrossRefGoogle Scholar
  70. van den Kroonenberg AC, Martin T, Buschmann M, Bange J, Vörsmann P (2008) Measuring the wind vector using the autonomous mini aerial vehicle M2AV. J Atmos Ocean Technol 25: 1969–1982CrossRefGoogle Scholar
  71. van den Kroonenberg AC, Martin S, Beyrich F, Bange J (2012) Spatially-averaged temperature structure parameter over a heterogeneous surface measured by an unmanned aerial vehicle. Boundary-Layer Meteorol 142: 55–77CrossRefGoogle Scholar
  72. van Kesteren B, Hartogensis OK (2011) Analysis of the systematic errors found in the Kipp & Zonen large-aperture scintillometer. Boundary-Layer Meteorol 138: 493–509CrossRefGoogle Scholar
  73. Von Randow C, Kruijt B, Holtslag AAM, de Oliveira MBL (2008) Exploring eddy-covariance and large-aperture scintillometer measurements in an Amazonian rain forest. Agric For Meteorol 148: 680–690CrossRefGoogle Scholar
  74. Watts CJ, Chehbouni A, Rodriguez JC, Kerr YH, Hartogensis OK, De Bruin HAR (2000) Comparison of sensible heat flux estimates using AVHRR with scintillometer measurements over semi-arid grassland in northwest Mexico. Agric For Meteorol 105: 81–89CrossRefGoogle Scholar
  75. Wesely ML (1976) The combined effect of temperature and humidity fluctuations on refractive index. J Appl Meteorol 15: 43–49CrossRefGoogle Scholar
  76. Wyngaard J, Kosovic B (1994) Similarity of structure–function parameters in the stably stratified boundary layer. Boundary-Layer Meteorol 71: 277–296CrossRefGoogle Scholar
  77. Wyngaard JC, Izumi Y, Collins SA (1971) Behavior of refractive-index structure parameter near ground. J Opt Soc Am 61: 1646–1650CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Frank Beyrich
    • 1
  • Jens Bange
    • 2
  • Oscar K. Hartogensis
    • 4
  • Siegfried Raasch
    • 5
  • Miranda Braam
    • 1
    • 3
  • Daniëlle van Dinther
    • 4
  • Doreen Gräf
    • 1
  • Bram van Kesteren
    • 4
  • Aline C. van den Kroonenberg
    • 2
    • 6
  • Björn Maronga
    • 5
  • Sabrina Martin
    • 7
  • Arnold F. Moene
    • 4
  1. 1.Meteorologisches Observatorium LindenbergRichard-Aßmann-Observatorium, Deutscher Wetterdienst (DWD)Tauche - OT LindenbergGermany
  2. 2.Zentrum für Angewandte Geowissenschaften (ZAG)Eberhard-Karls-Universität TübingenTübingenGermany
  3. 3.Meteorology and Air Quality GroupWageningen University and Research CentreWageningenThe Netherlands
  4. 4.Meteorology and Air Quality GroupWageningen University and Research CentreWageningenThe Netherlands
  5. 5.Institut für Meteorologie and Klimatologie, Fakultät für Mathematik und PhysikLeibniz-Universität HannoverHannoverGermany
  6. 6.Scintec AGRottenburgGermany
  7. 7.Institut für Luft- und Raumfahrt-SystemeTechnische Universität Carolo-Wilhelmina zu BraunschweigBraunschweigGermany

Personalised recommendations