Boundary-Layer Meteorology

, Volume 143, Issue 3, pp 507–526 | Cite as

Profiling the Arctic Stable Boundary Layer in Advent Valley, Svalbard: Measurements and Simulations

  • Stephanie Mayer
  • Marius O. Jonassen
  • Anne Sandvik
  • Joachim Reuder
Open Access
Article

Abstract

The unmanned aerial system SUMO (Small Unmanned Meteorological Observer) has been used for the observation of the structure and behaviour of the atmospheric boundary layer above the Advent Valley, Svalbard during a two-week period in early spring 2009. Temperature, humidity and wind profiles measured by the SUMO system have been compared with measurements of a small tethered balloon system that was operated simultaneously. It is shown that both systems complement each other. Above 200 m, the SUMO system outperforms the tethered balloon in terms of flexibility and the ability to penetrate strong inversion layers of the Arctic boundary layer. Below that level, the tethered balloon system provides atmospheric profiles with higher accuracy, mainly due to its ability to operate at very low vertical velocities. For the observational period, a numerical mesoscale model has been run at high resolution and evaluated with SUMO profiles reaching up to a height of 1500 m above the ground. The sensitivity to the choice of atmospheric boundary-layer schemes and horizontal resolution has been investigated. A new scheme especially suited for stable conditions slightly improves the temperature forecast in stable conditions, although all schemes show a warm bias close to the surface and a cold bias above the atmospheric boundary layer. During one cold and cloudless night, the SUMO system could be operated nearly continuously (every 30–45 minutes). This allowed for a detailed case study addressing the structure and behaviour of the air column within and above Advent Valley and its interaction with the local topography. The SUMO measurements in conjunction with a 10-m meteorological mast enabled the identification of a very stable nocturnal surface layer adjacent to the valley bottom, a stable air column in the valley and a strong inversion layer above the summit height. The results indicate the presence of inertial-gravity waves during the night, a feature not captured by the model.

Keywords

Atmospheric profiles Boundary-layer schemes High-resolution numerical model Inertial-gravity oscillation Small Unmanned Meteorological Observer (SUMO) measurements Stable Arctic atmospheric boundary layer 

References

  1. Brisset P, Drouin A, Gorraz M, Huard P, Tyler J (2006) The Paparazzi solution. MAV2006, Sandestin, FloridaGoogle Scholar
  2. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129(4): 569–585CrossRefGoogle Scholar
  3. Chou M, Suarez M (1999) A solar radiation parameterization for atmospheric studies. NASA Tech Memo 104606: 40Google Scholar
  4. Curry J, Maslanik J, Holland G, Pinto J (2004) Applications of Aerosondes in the Arctic. Bull Am Meteorol Soc 85(12): 1855–1861CrossRefGoogle Scholar
  5. De Wekker S, Whiteman C (2006) On the time scale of nocturnal boundary layer cooling in valleys and basins and over plains. J Appl Meteorol Climatol 45(6): 813–820CrossRefGoogle Scholar
  6. Dethloff K, Abegg C, Rinke A, Hebestadt I, Romanov V (2001) Sensitivity of arctic climate simulations to different boundary layer parameterizations in a regional climate model. Tellus A 53(1): 1–26CrossRefGoogle Scholar
  7. Galperin B, Sukoriansky S, Perov V (2007) Implementation of the Quasi-Normal Scale Elimination (QNSE) turbulence model in WRF. 8th WRF Users’ Workshop, Boulder CO, June 2007Google Scholar
  8. Hanssen-Bauer I, Førland E (2001) Verification and analysis of a climate simulation of temperature and pressure fields over Norway and Svalbard. Clim Res 16: 225–235CrossRefGoogle Scholar
  9. Hines K, Bromwich D, Bai LS, Barlage M, Slater A (2011) Development and testing of Polar WRF. Part III. Arctic land. J Climate 24: 26–48CrossRefGoogle Scholar
  10. Holton JR (1992) An introduction to dynamic meteorology, 3rd edn. Academic Press Inc., New York, 511 ppGoogle Scholar
  11. Hong S, Kim S (2007) Stable boundary layer mixing in a vertical diffusion scheme. The Korea Meteor Soc, Fall conference, Seoul, Korea, Oct 25–26Google Scholar
  12. Hong S, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9): 2318–2341CrossRefGoogle Scholar
  13. Janjic Z (1990) The step-mountain coordinate: physical package. Mon Weather Rev 118(7): 1429–1443CrossRefGoogle Scholar
  14. Janjic Z (1996) The surface layer in the NCEP Eta model. 11th Conference on Numerical Weather Prediction, Am Meteorol Soc pp 354–355Google Scholar
  15. Janjic Z (2002) Nonsingular implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP meso models. NCEP Office Note No. 437:61ppGoogle Scholar
  16. Jonassen M (2008) The Small Unmanned Meteorological Observer (SUMO)—characterization and test of a new measurement system for atmospheric boundary layer research. Master’s thesis, Geophysical Institute, University of BergenGoogle Scholar
  17. Kilpeläinen T, Vihma T, Ólafsson H (2010) Modelling of spatial variability and topographic effects over Arctic fjords in Svalbard. Tellus A 63(2): 223–237CrossRefGoogle Scholar
  18. Mahrt L (1998) Nocturnal boundary-layer regimes. Boundary-Layer Meteorol 88(2): 255–278CrossRefGoogle Scholar
  19. Manninen M (2009) Structure of the atmospheric boundary layer in Isfjorden, Svalbard, in late winter 2009. Master’s thesis, University Center in SvalbardGoogle Scholar
  20. Mayer S, Sandvik A, Jonassen M, Reuder J (2010) Atmospheric profiling with the UAS SUMO: a new perspective for the evaluation of fine-scale atmospheric models. Meteorol Atmos Phys. doi:10.1007/s00703-010-0063-2
  21. Mayer S, Hattenberger G, Brisset P, Jonassen M, Reuder R (2012) A ‘no-flow sensor’ wind estimation algorithm for Unmanned Aerial Systems. Int J Micro Air Veh 4(1): 15–29CrossRefGoogle Scholar
  22. Mckinnon K (1996) Convergence of the Nelder-Mead simplex method to a non-stationary point. Tech rep, SIAM J OptimGoogle Scholar
  23. Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14): 16663–16682CrossRefGoogle Scholar
  24. Petersson C (2007) An analysis of the local weather around Longyearbyen and an instrumental comparison. Master’s thesis, University Center in SvalbardGoogle Scholar
  25. Reuder J, Brisset P, Jonassen M, Müller M, Mayer S (2009) The Small Unmanned Meteorological Observer SUMO: a new tool for atmospheric boundary layer research. Meteorol Z 18(2): 141–147CrossRefGoogle Scholar
  26. Reuder J, Ablinger M, Ágústsson H, Brisset P, Brynjólfsson S, Garhammer M, Johannesson T, Jonassen M, Kühnel R, Lämmlein S, de Lange T, Lindenberg C, Malardel S, Mayer S, Müller M, Ólafsson H, Rögnvaldsson O, Schäper W, Spengler T, Zängl G, Egger J (2011) FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland. Meteorol Atmos Phys. doi:10.1007/s00703-010-0118-4
  27. Sandvik A, Furevik B (2002) Case study of a coastal jet at Spitsbergen—comparison of SAR and model estimated wind. Mon Weather Rev 130: 1040–1051CrossRefGoogle Scholar
  28. Schicker I, Seibert P (2009) Simulation of the meteorological conditions during a winter smog episode in the Inn Valley. Meteorol Atmos Phys 103(1): 211–222CrossRefGoogle Scholar
  29. Scorer R (1949) Theory of waves in the lee of mountains. Q J Roy Meteorol Soc 75(323): 41–56CrossRefGoogle Scholar
  30. Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2002) Review and intercomparison of operational methods for the determination of the mixing height. Dev Environ Sci 1: 569–613Google Scholar
  31. Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang XY, Wang W (2008) A Description of the Advanced Research WRF Version 3. NCAR/TN:475+STRGoogle Scholar
  32. Skeie P, Grønås S (2000) Strongly stratified easterly flows across Spitsbergen. Tellus A 52(5): 473–486CrossRefGoogle Scholar
  33. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Boston, 666 ppGoogle Scholar
  34. Sukoriansky S, Galperin B (2008) Anisotropic turbulence and internal waves in stably stratified flows (QNSE theory). Physica Scripta 132: 14–36Google Scholar
  35. Tjernström M, Zagar M, Svensson G (2004) Model simulations of the Arctic atmospheric boundary layer from the SHEBA year. AMBIO J Human Environ 33(4): 221–227Google Scholar
  36. Tjernström M, Zagar M, Svensson G, Cassano J, Pfeifer S, Rinke A, Wyser K, Dethlo K, Jones C, Semmler T, Shaw M (2005) Modelling the Arctic boundary layer: an evaluation of six ARCMIP regional-scale models using data from the SHEBA project. Boundary-Layer Meteorol 117: 337–381CrossRefGoogle Scholar
  37. Troen I, Mahrt L (1986) A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorol 37: 129–148CrossRefGoogle Scholar
  38. van den Kroonenberg A, Martin T, Buschmann M, Bange J, Vörsmann P (2008) Measuring the wind vector using the autonomous Mini Aerial Vehicle M 2 AV. J Atmos Ocean Technol 25: 1969–1982CrossRefGoogle Scholar
  39. Zilitinkevich S, Baklanov A (2002) Calculation of the height of the stable boundary layer in practical applications. Boundary-Layer Meteorol 105(3): 389–409CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Stephanie Mayer
    • 1
    • 2
  • Marius O. Jonassen
    • 1
  • Anne Sandvik
    • 3
  • Joachim Reuder
    • 1
  1. 1.Geophysical Institute, University of BergenBergenNorway
  2. 2.Uni Bjerknes CentreUni Research, Bjerknes Centre for Climate ResearchBergenNorway
  3. 3.Institute of Marine ResearchBergenNorway

Personalised recommendations