Advertisement

Boundary-Layer Meteorology

, Volume 143, Issue 3, pp 481–505 | Cite as

A Numerical Study of Sea-Fog Formation over Cold Sea Surface Using a One-Dimensional Turbulence Model Coupled with the Weather Research and Forecasting Model

  • Chang Ki Kim
  • Seong Soo Yum
Article

Abstract

The formation mechanism of a cold sea-fog case observed over the Yellow Sea near the western coastal area of the Korean Peninsula is investigated using numerical simulation with a one-dimensional turbulence model coupled with a three-dimensional regional model. The simulation was carried out using both Eulerian and Lagrangian approaches; both approaches produced sea fog in a manner consistent with observation. For the selected cold sea-fog case, the model results suggested the following: as warm and moist air flows over a cold sea surface, the lower part of the air column is modified by the turbulent exchange of heat and moisture and the diurnal variation in radiation. The modified boundary-layer structure represents a typical stable thermally internal boundary layer. Within the stable thermally internal boundary layer, the air temperature is decreased by radiative cooling and turbulent heat exchange but the moisture loss due to the downward vapour flux in the lowest part of the air column is compensated by moisture advection and therefore the dewpoint temperature does not decrease as rapidly as does the air temperature. Eventually water vapour saturation is achieved and the cold sea fog forms in the thermal internal boundary layer.

Keywords

One-dimensional turbulence model Radiation Sea fog Thermal internal boundary layer Three-dimensional regional model Turbulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballard SP, Golding BW, Smith RNB (1991) Mesoscale model experimental forecasts of the haar of northeast Scotland. Mon Wea Rev 119(9): 2107–2123CrossRefGoogle Scholar
  2. Bendix J, Thies B, Nauß T, Cermak J (2006) A feasibility study of daytime fog and low stratus detection with TERRA/AQUA-MODIS over land, vol 13. Wiley, New York. doi: 10.1017/s1350482706002180 Google Scholar
  3. Bergot T, Guedalia D (1994) Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Mon Wea Rev 122(6): 1218–1230CrossRefGoogle Scholar
  4. Bergot T, Terradellas E, Cuxart J, Mira A, Liechti O, Mueller M, Nielsen NW (2007) Intercomparison of single-column numerical models for the prediction of radiation fog. J Appl Meteorol Climatol 46(4): 504–521CrossRefGoogle Scholar
  5. Bott A, Trautmann T (2002) PAFOG—a new efficient forecast model of radiation fog and low-level stratiform clouds. Atmos Res 64(1–4): 191–203CrossRefGoogle Scholar
  6. Bott A, Sievers U, Zdunkowski W (1990) A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics. J Atmos Sci 47(18): 2153–2166CrossRefGoogle Scholar
  7. Boutle I, Beare R, Belcher S, Brown A, Plant R (2010) The moist boundary layer under a mid-latitude weather system. Boundary-Layer Meteorol 134(3): 367–386CrossRefGoogle Scholar
  8. Brown R, Roach WT (1976) The physics of radiation fog: II—a numerical study. Q J Roy Meteorol Soc 102(432): 335–354Google Scholar
  9. Chaumerliac N, Richard E, Pinty JP, Nickerson EC (1987) Sulfur scavenging in a mesoscale model with quasi-spectral microphysics: two-dimensional results for continental and maritime clouds. J Geophys Res 92(D3): 3114–3126. doi: 10.1029/JD092iD03p03114 CrossRefGoogle Scholar
  10. Choi H, Speer MS (2006) The influence of synoptic-mesoscale winds and sea surface temperature distribution on fog formation near the Korean western peninsula. Meteorol Appl 13(4): 347–360CrossRefGoogle Scholar
  11. Croft PJ, Darbe DL, Garmon JF (1995) Forecasting significant fog in southern Alabama. Natl Wea Dig 19(4): 10–16Google Scholar
  12. Douglas C (1930) Cold fogs over the sea. Meteorol Mag 65: 133–135Google Scholar
  13. Duynkerke PG (1991) Radiation fog: a comparison of model simulation with detailed observations. Mon Wea Rev 119(2): 324–341CrossRefGoogle Scholar
  14. Duynkerke PG (1999) Turbulence, radiation and fog in Dutch stable boundary layers. Boundary-Layer Meteorol 90(3): 447–477CrossRefGoogle Scholar
  15. Ellrod GP (1995) Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Wea Forecast 10(3): 606–619CrossRefGoogle Scholar
  16. Findlater J, Roach WT, McHugh BC (1989) The haar of north-east Scotland. Q J Roy Meteorol Soc 115(487): 581–608CrossRefGoogle Scholar
  17. Fu G, Zhang M, Duan Y, Zhang T, Wang J (2004) Characteristics of sea fog over the Yellow Sea and the East China Sea. Kaiyo Mon 38: 99–107Google Scholar
  18. Fu G, Guo JT, Xie SP, Duane YH, Zhang MG (2006) Analysis and high-resolution modeling of a dense sea fog event over the Yellow Sea. Atmos Res 81(4): 293–303CrossRefGoogle Scholar
  19. Gao SH, Lin H, Shen B, Fu G (2007) A heavy sea fog event over the Yellow Sea in March 2005: analysis and numerical modeling. Adv Atmos Sci 24(1): 65–81CrossRefGoogle Scholar
  20. Garratt JR (1987) The stably stratified internal boundary layer for steady and diurnally varying offshore flow. Boundary-Layer Meteorol 38: 369–394CrossRefGoogle Scholar
  21. Holtslag AAM, De Bruijn EIF, Pan H-L (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Wea Rev 118(8): 1561–1575CrossRefGoogle Scholar
  22. Inoue T, Kamahori H (2001) Statistical relationship between ISCCP cloud type and vertical relative humidity profile. J Meteorol Soc Jpn 79(6): 1243–1256CrossRefGoogle Scholar
  23. Johnson GA, Graschel J (1992) Sea fog and stratus: a major aviation and marine hazard in the northern Gulf of Mexico. In: Symposium on weather forecasting, Atlanta, GA. American Meteorological Society, pp 55–60Google Scholar
  24. Kim CK, Yum SS (2010) Local meteorological and synoptic characteristics of fogs formed over Incheon international airport in the west coast of Korea. Adv Atmos Sci 27(4): 761–776CrossRefGoogle Scholar
  25. Kim CK, Yum SS (2011) Marine boundary layer structure for the sea fog formation off the west coast of the Korean Peninsula. Pure Appl Geophys. doi: 10.1007/s00024-011-0325-z
  26. Koracin D, Lewis J, Thompson WT, Dorman CE, Businger JA (2001) Transition of stratus into fog along the California coast: observations and modeling. J Atmos Sci 58(13): 1714–1731CrossRefGoogle Scholar
  27. Koracin D, Businger J, Dorman C, Lewis J (2005) Formation, evolution, and dissipation of coastal sea fog. Boundary-Layer Meteorol 117(3): 447–478CrossRefGoogle Scholar
  28. Leigh RJ (1995) Economic benefits of terminal aerodrome forecasts (TAFs) for Sydney airport, Australia, vol 2. Wiley, New York. doi: 10.1002/met.5060020307 Google Scholar
  29. Lewis J, Koracin D, Rabin R, Businger J (2003) Sea fog off the California coast: viewed in the context of transient weather systems. J Geophy Res 108(D15). doi: 10.1029/2002jd002833|issn0747-7309
  30. Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31(7): 1791–1806CrossRefGoogle Scholar
  31. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4): 851–875CrossRefGoogle Scholar
  32. Müller MD, Schmutz C, Parlow E (2007) A one-dimensional ensemble forecast and assimilation system for fog prediction. Pure Appl Geophys 164(6): 1241–1264CrossRefGoogle Scholar
  33. Musson-Genon L (1987) Numerical simulation of a fog event with a one-dimensional boundary layer model. Mon Wea Rev 115(2): 592–607CrossRefGoogle Scholar
  34. Nicholls S, Leighton J (1986) An observational study of the structure of stratiform cloud sheets: part I. Structure. Q J Roy Meteorol Soc 112(472): 431–460CrossRefGoogle Scholar
  35. Nickerson EC, Richard E, Rosset R, Smith DR (1986) The numerical simulation of clouds, rains and airflow over the Vosges and Black forest mountains: a meso-β model with parameterized microphysics. Mon Wea Rev 114(2): 398–414CrossRefGoogle Scholar
  36. Pagowski M, Gultepe I, King P (2004) Analysis and modeling of an extremely dense fog event in southern Ontario. J Appl Meteorol 43(1): 3–16CrossRefGoogle Scholar
  37. Petterssen S (1938) On the causes and the forecasting of the California fog. Bull Am Meteorol Soc 19(2): 49–55Google Scholar
  38. Pilie RJ, Mack EJ, Rogers CW, Katz U, Kocmond WC (1979) The formation of marine fog and the development of fog-stratus systems along the California coast. J Appl Meteorol 18(10): 1275–1286CrossRefGoogle Scholar
  39. Pruppacher H, Klett J (1997) Microphysics of cloud and precipitation. Kluwer, Dordrecht, p 955Google Scholar
  40. Roach WT, Brown R, Caughey SJ, Garland JA, Readings CJ (1976) The physics of radiation fog: I—a field study. Q J Roy Meteorol Soc 102(432): 313–333Google Scholar
  41. Rossow WB, Walker AW, Garder LC (1993) Comparison of ISCCP and other cloud amounts. J Clim 6(12): 2394–2418CrossRefGoogle Scholar
  42. Ryznar E (1977) Advection-radiation fog near lake Michigan. Atmos Environ 11(5): 427–430CrossRefGoogle Scholar
  43. Sakakibara H (1979) A scheme for stable numerical computation of the condensation process with large time steps. J Meteorol Soc Jpn 57: 349–353Google Scholar
  44. Shi C, Wang L, Zhang H, Zhang S, Deng X, Li Y, Qiu M (2011) Fog simulations based on multi-model system: a feasibility study. Pure Appl Geophys. doi: 10.1007/s00024-011-0340-0
  45. Siebert J, Sievers U, Zdunkowski W (1992) A one-dimensional simulation of the interaction between land surface processes and the atmosphere. Boundary-Layer Meteorol 59(1): 1–34CrossRefGoogle Scholar
  46. Skamarock WC et al (2008) A description of the advanced research WRF version 3. NCAR Tech Note NCAR/TN-475+STR, 113 ppGoogle Scholar
  47. Sorli B, Pascal-Delannoy F, Giani A, Foucaran A, Boyer A (2002) Fast humidity sensor for high range 80–95% RH. Sens Actuators A 100(1): 24–31CrossRefGoogle Scholar
  48. Steeneveld GJ, Wokke MJJ, Groot Zwaaftink CD, Pijlman S, Heusinkveld BG, Jacobs AFG, Holtslag AAM (2010) Observations of the radiation divergence in the surface layer and its implication for its parameterization in numerical weather prediction models. J Geophys Res 115(D6): D06107. doi: 10.1029/2009jd013074 CrossRefGoogle Scholar
  49. Steeneveld GJ, Tolk LF, Moene AF, Hartogensis OK, Peters W, Holtslag AAM (2011) Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: evaluating the boundary layer heat budget. J Geophys Res 16:D23114. doi: 10.1029/2011JD016303
  50. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, p 666Google Scholar
  51. Tardif R (2007) The impact of vertical resolution in the explicit numerical forecasting of radiation fog: a case study. Pure Appl Geophys 164(6): 1221–1240CrossRefGoogle Scholar
  52. Taylor GI (1917) The formation of fog and mist. Q J Roy Meteorol Soc 43(183): 241–268CrossRefGoogle Scholar
  53. Thoma C, Schneider W, Rohn M, Rohner P, Beckmann B-R, Masbou M, Bott A (2010) Development of the one dimensional fog model PAFOG for operational use at Munich airport. In: The 5th international conference on fog, fog collection and dew, Munster, Germany. European Meteorological Society, p 34Google Scholar
  54. Trement M (1989) The forecasting of sea fog. Meteorol Mag 118: 69–75Google Scholar
  55. Underwood SJ, Ellrod GP, Kuhnert AL (2004) A multiple-case analysis of nocturnal radiation-fog development in the central valley of California utilizing the GOES nighttime fog product. J Appl Meteorol 43(2): 297–311CrossRefGoogle Scholar
  56. van der Velde IR, Steeneveld GJ, Wichers Schreur BGJ, Holtslag AAM (2010) Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon Wea Rev 138(11): 4237–4253CrossRefGoogle Scholar
  57. Weare BC (1994) Interrelationships between cloud properties and sea surface temperatures on seasonal and interannual time scales. J Clim 7(2): 248–260CrossRefGoogle Scholar
  58. Wells WC (1814) Essay on dew, and several appearance connected with it. Taylor and Hessey, LondonGoogle Scholar
  59. Willett HC (1928) Fog and haze, their causes, distribution, and forecasting. Mon Wea Rev 56(11): 435–468CrossRefGoogle Scholar
  60. Yamanouchi T, Suzuki K, Kawaguchi S (1987) Detection of clouds in Antarctica from infrared multispectral data of AVHRR. J Meteorol Soc Jpn 65: 949–962Google Scholar
  61. Yum SS, Hudson JG, Song KY, Choi BC (2005) Springtime cloud condensation nuclei concentrations on the west coast of Korea. Geophy Res Lett 32(9). doi: 10.1029/2005gl022641
  62. Zdunkowski W, Panhans W-G, Welch RM, Korb GJ (1982) A radiation scheme for circulation and climate models. Contrib Atmos Phys 55: 215–238Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesYonsei UniversitySeoulKorea

Personalised recommendations