Boundary-Layer Meteorology

, Volume 143, Issue 1, pp 207–225 | Cite as

Stratus–Fog Formation and Dissipation: A 6-Day Case Study

  • Jean-Charles Dupont
  • Martial Haeffelin
  • Alain Protat
  • Dominique Bouniol
  • Neda Boyouk
  • Yohann Morille
Open Access
Article

Abstract

A suite of active and passive remote sensing instruments and in-situ sensors deployed at the SIRTA Observatory (Instrumented Site for Atmospheric Remote Sensing Research), near Paris, France, for a period of six months (October 2006–March 2007) document simultaneously radiative, microphysical and dynamic processes driving the continental-fog life cycle. The study focuses on a 6-day period between 23 and 29 December 2006 characterized by several stratus-cloud lowering and lifting events and almost 18 h of visibility below 1 km. Conceptual models and different possible scenarios are presented here to explain the formation, the development and the dissipation phases of three major stratus–fog events and to quantify the impact of each driving process. For example, slowly evolving large-scale conditions characterized by a slow continuous cloud-base lowering, followed by a rapid transient period conductive to fog formation and dissipation, are observed for cases 1 and 3. During this stable period, continuous cloud-top radiative cooling (≈ −160 Wm−2) induces a progressive and slow lowering of the cloud base: larger droplets at cloud top (cloud reflectivity approximately equals to −20 dBZ) induce slow droplet fall to and beyond cloud base (Doppler velocity ≈ −0.1 ms−1), cooling the sub-cloud layer by evaporation and lowering the saturation level to 100 m (case 1) or to the surface (cases 2 and 3). Suddenly, a significant increase in Doppler velocity magnitude ≈ −0.6 ms−1 and of turbulent kinetic energy dissipation rate around 10−3 m2s−3 occurs at cloud base (case 1). These larger cloud droplets reach the surface leading to fog formation over 1.5 h. The Doppler velocity continues to increase over the entire cloud depth with a maximum value of around −1 ms−1 due to the collection of fog droplets by the drizzle drops with high collection efficiency. As particles become larger, they fall to the ground and lead to fog dissipation. Hence, falling particles play a major role in both the formation and also in the dissipation of the fog. These roles co-exist and the balance is driven by the characteristics of the falling particles, such as the concentration of drizzle drops, the size distribution of drizzle drops compared to fog droplets, Doppler velocity and thermodynamic state close to the surface.

Keywords

Fog life cycle Fog observations In-cloud processes Stratus cloud 

References

  1. Angström A (1918) A study of the radiation of the atmosphere. Smithson Misc Collect 65: 1–159Google Scholar
  2. Battan LJ (1973) Radar observation of the atmosphere. The University of Chicago Press, Chicago, 324 ppGoogle Scholar
  3. Bergot T, Carrer D, Noilhan J, Bougeault P (2005) Improved site-specific numerical prediction of fog and low clouds: a feasibility study. Weather Forecast 20: 627–646CrossRefGoogle Scholar
  4. Bergot T, Haeffelin M et al (2008) ParisFog: des chercheurs dans le brouillard. La Météorologie 62: 1–10Google Scholar
  5. Bouniol D, Illingworth AJ, Hogan RJ (2003) Deriving TKE dissipation rate within clouds using ground based 94 GHz radar. Preprints, 31st conference on Radar Meteorology, Seattle, WA, American Meteorological Society, pp 193–196. http://ams.confex.com/ams/pdfpapers/63826.pdf
  6. Brutsaert W (1975) On a derivable formula for long-wave radiation from clear skies. Water Resour Res 11: 742–744CrossRefGoogle Scholar
  7. Dupont JC, Haeffelin M, Drobinski P, Besnard T (2007) Parametric model to estimate clear-sky longwave irradiance at the surface based on vertical distribution of humidity and temperature. J Geophys Res 113. doi:10.1029/2007JD009046
  8. Elias T, Haeffelin M, Drobinski P, Gomes L, Rangognio J, Bergot T, Chazette P, Raut J-C, Colomb M (2009) Particulate contribution to extinction of visible radiation: pollution, haze, and fog. Atmos Res. doi:10.1016/j.atmosres.2009.01.006
  9. Fuzzi S, Facchini MC, Orsi G, Lind JA, Wobrock W, Kessel M, Maser R, Jaeschke W, Enderle KH, Arends BG, Berner A, Solly A, Kruisz C, Reischl G, Pahl S, Kaminski U, Winkler P, Ogren JA, Noone KJ, Hallberg A, Fierlinger-oberlinninger H, Puwbaum H, Marzorati A, Hansson H-C, Wiedensohler A, Svenningsson IB, Martinsson BG, Schell D, Georgii HW (1992) The Po valley fog experiment 1989. An overview. Tellus 44: 448–468CrossRefGoogle Scholar
  10. Gultepe I, Tardif R, Michaelides SC, Cermak J, Bott A, Bendix J, Müller MD, Pagowski M, Hansen B, Ellrod G, Jacobs W, Toth G, Cober SG (2007) Fog research: a review of past achievements and future perspectives. Pure Appl Geophys 164: 1121–1159CrossRefGoogle Scholar
  11. Haeffelin M, Barthès L, Bock O, Boitel C, Bony S, Bouniol D, Chepfer H, Chiriaco M, Cuesta J, Delanoe J, Drobinski P, Dufresne JL, Flamant C, Grall M, Hodzic A, Hourdin F, Lapouge F, Lemaitre Y, Mathieu A, Morille Y, Naud C, Noel V, OH’irok B, Pelon J, Pietras C, Protat A, Romand B, Scialom G, Vautard R (2005) SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann Geophys 23: 253–275CrossRefGoogle Scholar
  12. Haeffelin M, Bergot T, Elias T, Tardif R, Carrer D, Chazette P, Colomb M, Drobinski P, Dupont E, Dupont J-C, Gomes L, Musson-Genon L, Pietras C, Plana-Fattori A, Protat A, Rangognio J, Raut J-C, Rémy S, Richard D, Sciare J, Zhang X (2010) PARISFOG: shedding new light on fog physical processes. Bull Am Meteorol Soc 91: 767–783. doi:10.1175/2009BAMS2671.1 CrossRefGoogle Scholar
  13. Hall WD (1980) A detailed microphysical model within a two-dimensional dynamic framework: model description and preliminary results. J Atmos Sci 37: 2486–2507CrossRefGoogle Scholar
  14. Holets S, Swanson RN (1981) High-inversion fog episodes in Central California. J Appl Meteorol 20: 890–899CrossRefGoogle Scholar
  15. Koracin D, Lewis J, Thompson WT, Dorman CE, Businger JA (2000) Transition of stratus into fog along the California coast: observations and modeling. J Atmos Sci 58: 1714–1731CrossRefGoogle Scholar
  16. Morille Y, Haeffelin M, Drobinski P, Pelon J (2007) STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data. J Atmos Oceanic Technol 24: 761–775. doi:10.1175/JTECH2008.1 CrossRefGoogle Scholar
  17. Müller MD, Schmutz C, Parlow E (2007) A one-dimensional ensemble forecast and assimilation system for fog prediction. Pure Appl Geophys 164: 1241–1264CrossRefGoogle Scholar
  18. Musson-Genon L (1987) Numerical simulations of a fog event with a one- dimensional boundary layer model. Mon Weather Rev 115: 592–607CrossRefGoogle Scholar
  19. O’Connor EJ, Hogan RJ, Illingworth AJ (2005) Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J Appl Meteorol 44: 14–27CrossRefGoogle Scholar
  20. Ohmura A et al (1998) Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research. Bull Am Meteorol Soc 79(10): 2115–2136. doi:10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2 CrossRefGoogle Scholar
  21. Oliver DA, Lewellen WS, Williamson GG (1978) The interaction between turbulent and radiative transport in the development of fog and low-level stratus. J Atmos Sci 35: 301–316Google Scholar
  22. Pagowski M, Gultepe I, King P (2004) Analysis and modeling of an extremely dense fog event in southern Ontario. J Appl Meteorol 43: 3–16CrossRefGoogle Scholar
  23. Pilié RJ, Mack EJ, Kocmond WC, Rogers CW, Eadie WJ (1975) The life cycle of valley fog. Part I: Micrometeorological characteristics. J Appl Meteorol 14: 347–363CrossRefGoogle Scholar
  24. Protat A, Pelon J, Testud J, Grand N, Delville P, Laborie P, Vinson J-P, Bouniol D, Bruneau D, Chepfer H, Delanoë J, Haeffelin M, Noël V, Tinel C (2004) Le projet RALI: Combinaison d’un radar nuage et d’un lidar pour l’étude des nuages faiblement précipitants. La Météorologie 8e série 47: 23–33Google Scholar
  25. Rossow WB, Walker AW, Beuschel D, Roitier M (1996) International Satellite Cloud Climatology Project (ISCCP): description of new cloud dataset. World Climate Research Programme, Geneva, WMO/TD-737, 115 ppGoogle Scholar
  26. Ryznar E (1977) Advection-radiation fog near Lake Michigan. Atmos Environ 11: 427–430CrossRefGoogle Scholar
  27. Shupe M, Kollias P, Poellot M, Eloranta E (2007) On deriving vertical air motions from cloud radar Doppler spectra. J Atmos Oceanic Technol 25: 547–557CrossRefGoogle Scholar
  28. Siebert J, Bott A, Zdunkowski W (1992) Influence of a vegetation-soil model on the simulation of radiation fog. Beitr Phys Atmos 65: 93–106Google Scholar
  29. Tag PM, Peak JE (1996) Machine learning of maritime fog forecast rules. J Appl Meteorol 35: 714–724CrossRefGoogle Scholar
  30. Tardif R (2007) The impact of vertical resolution in the explicit numerical forecasting of radiation fog: a case study. Pure Appl Geophys 164: 1221–1240CrossRefGoogle Scholar
  31. Tardif R, Rasmussen RM (2007) Event-based climatology and typology of fog in the New York City region. J Appl Meteorol Climatol 46: 1141–1167CrossRefGoogle Scholar
  32. Telford J, Chai SK (1984) Inversions and fog, stratus and cumulus formation in warm air over cooler water. Boundary-Layer Meteorol 29: 109–137CrossRefGoogle Scholar
  33. Underwood SJ, Ellrod GP, Kuhnert AL (2004) A multiple-case analysis of nocturnal radiation-fog development in the central valley of California utilizing the GOES nighttime fog product. J Appl Meteorol 43: 297–311CrossRefGoogle Scholar
  34. Winker DM, Vaughan MA, Omar AH, Hu Y, Powell KA, Liu Z, Hunt WH, Young SA (2009) Overview of the CALIPSO mission and CALIOP data processing algorithms. J Atmos Oceanic Technol 26: 2310–2323. doi:10.1175/2009JTECHA1281.1 CrossRefGoogle Scholar
  35. Wood R, Kubar TL, Hartmann DL (2009) Understanding the importance of microphysics and macrophysics for warm rain marine low clouds. Part II: heuristic models and rain formation. J Atmos Sci 66: 2973–2990CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Jean-Charles Dupont
    • 1
  • Martial Haeffelin
    • 1
  • Alain Protat
    • 2
  • Dominique Bouniol
    • 3
  • Neda Boyouk
    • 4
  • Yohann Morille
    • 4
  1. 1.Institut Pierre Simon LaplaceEcole PolytechniquePalaiseauFrance
  2. 2.Laboratoire Atmospheres Milieux, Observations SpatialesGuyancourtFrance
  3. 3.Groupe d’étude de l’Atmosphère Metéorologique/Centre National de la Recherche en MétéorologieCNRS/Météo-FranceToulouseFrance
  4. 4.Laboratoire de Météorologie DynamiqueInstitut Pierre Simon Laplace, Ecole PolytechniquePalaiseauFrance

Personalised recommendations