Boundary-Layer Meteorology

, Volume 142, Issue 1, pp 55–77 | Cite as

Spatially-Averaged Temperature Structure Parameter Over a Heterogeneous Surface Measured by an Unmanned Aerial Vehicle

  • A. C. van den KroonenbergEmail author
  • S. Martin
  • F. Beyrich
  • J. Bange


The structure parameter of temperature, \({C_{T}^{2}}\) , in the lower convective boundary layer was measured using the unmanned mini aerial vehicle M2AV. The measurements were carried out on two hot summer days in July 2010 over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory—Richard-Aßmann-Observatory of the German Meteorological Service. The spatial series of \({C_{T}^{2}}\) showed considerable variability along the flight path that was caused by both temporal variations and surface heterogeneity. Comparison of the aircraft data with \({C_{T}^{2}}\) values derived from tower-based in situ turbulence measurements showed good agreement with respect to the diurnal variability. The decrease of \({C_{T}^{2}}\) with height as predicted by free-convection scaling could be confirmed for the morning and afternoon flights while the flights around noon suggest a different behaviour.


Heterogeneous surface Spatial averaging Temperature structure parameter Unmanned aerial vehicle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bange J, Spieß T, van den Kroonenberg AC (2007) Characteristics of the early-morning shallow convective boundary layer from helipod flights during STINHO-2. Theor Appl Climatol 90(1–2): 113–126CrossRefGoogle Scholar
  2. Banta R, Newsom R, Lundquist J, Pichugina Y, Coulter R, Mahrt L (2002) Nocturnal low-level jet characteristics over Kansas during CASES-99. Boundary-Layer Meteorol 105: 221–252CrossRefGoogle Scholar
  3. Beyrich F, Mengelkamp HT (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment—an overview. Boundary-Layer Meteorol 121: 1–28CrossRefGoogle Scholar
  4. Beyrich F, de Bruin HAR, Meijninger WML, Schipper JW, Lohse H (2002) Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Boundary-Layer Meteorol 105: 85–97CrossRefGoogle Scholar
  5. Braam M (2010) Determination of the surface sensible heat flux from the structure parameter of temperature at 60 m height during day-time. KNMI technical report TR-303, 39 ppGoogle Scholar
  6. Bromba MUA, Zlegler H (1981) Application hints for Savitzky-Golay digital smoothing filters. Anal Chem 53: 1583–1586CrossRefGoogle Scholar
  7. Coulman CE (1973) Vertical profiles of small-scale temperature structure in the atmosphere. Boundary-Layer Meteorol 4: 169–177CrossRefGoogle Scholar
  8. Cuijpers JWM, Kohsiek W (1989) Vertical profiles of the structure parameter of temperature in the stable, nocturnal boundary layer. Boundary-Layer Meteorol 47: 111–129CrossRefGoogle Scholar
  9. Cuxart J (2008) Nocturnal basin low-level jets: an integrated study. Acta Geophys 56(1): 100–113CrossRefGoogle Scholar
  10. Cuxart J, Jiménez MA (2007) Mixing processes in a nocturnal low-level jet: an LES study. J Atmos Sci 64: 1666–1679CrossRefGoogle Scholar
  11. de Bruin HAR, van den Hurk BJJM, Kohsiek W (1995) The scintillation method tested over a dry vineyard area. Boundary-Layer Meteorol 76: 25–40CrossRefGoogle Scholar
  12. Fairall CW (1987) A top-down and bottom-up diffusion model of CT2 and Cq2 in the entraining convective boundary layer. J Atmos Sci 44: 1009–1017CrossRefGoogle Scholar
  13. Fairall CW, Markson R, Schacher GE, Davidson KL (1980) An aircraft study of turbulence dissipation rate and temperature structure function in the unstable marine atmospheric boundary layer. Boundary-Layer Meteorol 19: 453–469CrossRefGoogle Scholar
  14. Frisch AS, Clifford SF (1975) A note on the behaviour of the temperature structure parameter in a convective layer capped by a marine inversion. J Appl Meteorol 14: 415–419CrossRefGoogle Scholar
  15. Görsdorf U, Adedokoun JA, Engelbart DAM (2004) Low-level jet climatology using combined sodar and wind profiler measurements. In: Proceedings of the 12th international symposium on acoustic remote sensing, Cambridge, UKGoogle Scholar
  16. Hoedjes JCB, Chehbouni A, Ezzahar J, Escadafal R, de Bruin HAR (2007) Comparison of large aperture scintillometer and eddy covariance measurements: can thermal infrared data be used to capture footprint-induced differences?.   J Hydrometeorol 8: 144–159CrossRefGoogle Scholar
  17. Holland GJ, Webster PJ, Curry JA, Tyrell G, Gauntlett D, Brett G, Becker J, Hoag R, Vaglienti W (2001) The Aerosonde robotic aircraft: a new paradigm for environmental observations. Bull Am Meteorol Soc 82(5): 889–901CrossRefGoogle Scholar
  18. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows—their structure and measurement. Oxford University Press, New York, p 289 ppGoogle Scholar
  19. Kaimal JC, Gaynor JE (1991) Another look to sonic thermometry. Boundary-Layer Meteorol 56: 401–410CrossRefGoogle Scholar
  20. Kohsiek W (1982) Measuring \({C_T^2}\), \({C_Q^2}\) , and C TQ in the unstable surface layer, and relations to the vertical fluxes of heat and moisture. Boundary-Layer Meteorol 24: 89–107CrossRefGoogle Scholar
  21. Kolmogorov A (1941) Local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30: 299–303Google Scholar
  22. Lenschow DH, Stankov BB (1986) Length scales in the convective boundary layer. J Atmos Sci 43: 1198–1209CrossRefGoogle Scholar
  23. Lenschow DH, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes and other turbulence statistics. J Atmos Ocean Technol 11: 661–673CrossRefGoogle Scholar
  24. Lumley L, Panofsky H (1964) The structure of atmospheric turbulence. Wiley, New York, 239 ppGoogle Scholar
  25. Ma S, Chen H, Wang G, Pan Y, Li Q (2004) A miniature robotic plane meteorological sounding system. Adv Atmos Sci 21: 890–896CrossRefGoogle Scholar
  26. Martin S, Bange J, Beyrich F (2011) Profiling the lower troposphere using the research UAV ‘M2AV Carolo’. Atmos Meas Tech 4: 705–716CrossRefGoogle Scholar
  27. Mayer S, Sandvik A, Jonassen MO, Reuder J (2010) Atmospheric profiling with the UAS SUMO: a new perspective for the evaluation of fine-scale atmospheric models. Meteorol Atmos Phys 12. doi: 10.1007/s00703-010-0063-2
  28. Meijninger WML, de Bruin HAR (2000) The sensible heat fluxes over irrigated areas in western Turkey determined with a large-aperture scintillometer. J Hydrol 229: 42–49CrossRefGoogle Scholar
  29. Meijninger WML, Beyrich F, Lüdi A, Kohsiek W, de Bruin HAR (2006) Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—a contribution to LITFASS-2003. Boundary-Layer Meteorol 121: 89–110CrossRefGoogle Scholar
  30. Nieveen JP, Green AE (1999) Measuring sensible heat flux density over pasture using the \({C_{T}^{2}}\) -profile method. Boundary-Layer Meteorol 91: 23–35CrossRefGoogle Scholar
  31. Reuder J, Brisset P, Jonassen M, Müller M, Mayer S (2009) The small unmanned meteorological observer SUMO: a new tool for atmospheric boundary layer research. Meteorol Z 18(2): 141–147CrossRefGoogle Scholar
  32. Rotta JC (1972) Turbulente Strömungen. Eine Einführung in die Theorie und ihre Anwendung. Teubner, StuttgartGoogle Scholar
  33. Soddell JR, McGuffie K, Holland GJ (2004) Intercomparison of atmospheric soundings from the Aeroson and radiosonde. J Appl Meteorol 43: 1260–1269CrossRefGoogle Scholar
  34. Sorbjan Z (2005) Statistics of scalar fields in the atmospheric boundary layer based on large-eddy simulations. Part I: Free convection. Boundary-Layer Meteorol 116: 467–486CrossRefGoogle Scholar
  35. Spieß T, Bange J, Buschmann M, Vörsmann P (2007) First application of the meteorological mini-UAV ’M2 AV’. Meteorol Z N F 16(2): 159–169CrossRefGoogle Scholar
  36. Thorpe AJ, Guymer TH (1977) The nocturnal jet. Q J R Meteorol Soc 103: 633–653CrossRefGoogle Scholar
  37. van den Kroonenberg AC (2009) Airborne measurement of small-scale turbulence with special regard to the polar boundary layer. No. 2009-11 in ZLR-Forschungsbericht, Sierke Verlag, Göttingen, GermanyGoogle Scholar
  38. van den Kroonenberg AC, Spieß T, Buschmann M, Martin T, Anderson PS, Beyrich F, Bange J (2007) Boundary layer measurements with the autonomous mini-UAV M2AV. In: Deutsch - Österreichisch - Schweizerische Meteorologen - Tagung, Deutsche Meteorologische Gesellschaft, Hamburg, Germany, p 10Google Scholar
  39. van den Kroonenberg AC, Martin T, Buschmann M, Bange J, Vörsmann P (2008) Measuring the wind vector using the autonomous mini aerial vehicle M2AV. J Atmos Ocean Technol 25(11): 1969–1982CrossRefGoogle Scholar
  40. Wyngaard JC, LeMone MA (1980) Behavior of the refractive index structure parameter in the entraining convective boundary layer. J Atmos Sci 37: 1573–1585CrossRefGoogle Scholar
  41. Wyngaard JC, Izumi Y, Collins SA (1971) Behavior of the refractive-index-structure parameter near the ground. J Opt Soc Am 61: 1646–1650CrossRefGoogle Scholar
  42. Wyngaard JC, Pennell WT, Lenschow DH, LeMone MA (1978) The temperature-humidity covariance budget in the convectice boundary layer. J Atmos Sci 35: 47–58CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. C. van den Kroonenberg
    • 1
    Email author
  • S. Martin
    • 2
  • F. Beyrich
    • 3
  • J. Bange
    • 1
  1. 1.Zentrum für GeowissenschaftenEberhard Karls Universität TübingenTübingenGermany
  2. 2.Institute für Luft- und RaumfahrtsystemenTechnische Universität BraunschweigBraunschweigGermany
  3. 3.Meteorologisches Observatorium Lindenberg/Richard-Aßmann ObservatoriumDeutscher WetterdienstLindenbergGermany

Personalised recommendations