Advertisement

Boundary-Layer Meteorology

, Volume 145, Issue 1, pp 45–67 | Cite as

Monin–Obukhov Similarity Functions for the Structure Parameters of Temperature and Humidity

  • Dan LiEmail author
  • Elie Bou-Zeid
  • Henk A. R. De Bruin
Article

Abstract

Monin–Obukhov similarity functions for the structure parameters of temperature and humidity are needed to derive surface heat and water vapour fluxes from scintillometer measurements and it is often assumed that the two functions are identical in the atmospheric surface layer. Nevertheless, this assumption has not yet been verified experimentally. This study investigates the dissimilarity between the turbulent transport of sensible heat and water vapour, with a specific focus on the difference between the Monin–Obukhov similarity functions for the structure parameters. Using two datasets collected over homogeneous surfaces where the surface sources of sensible heat and water vapour are well correlated, we observe that under stable and very unstable conditions, the two functions are similar. This similarity however breaks down under weakly unstable conditions; in that regime, the absolute values of the correlations between temperature and humidity are also observed to be low, most likely due to large-scale eddies that transport unsteadiness, advection or entrainment effects from the outer layer. We analyze and demonstrate how this reduction in the correlation leads to dissimilarity between the turbulent transport of these two scalars and the corresponding Monin–Obukhov similarity functions for their structure parameters. A model to derive sensible and latent heat fluxes from structure parameters without measuring the friction velocity is tested and found to work very well under moderately to strongly unstable conditions (−z/L > 0.5). Finally, we discuss the modelling of the cross-structure parameter over wet surfaces, which is crucial for correcting water vapour effects on optical scintillometer measurements and also for obtaining surface sensible and latent heat fluxes from the two-wavelength scintillometry.

Keywords

Evaporation Monin–Obukhov similarity Scintillometry Structure parameters Temperature–humidity similarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreas EL (1988) Atmospheric stability from scintillation measurements. Appl Opt 27(11): 2241–2246CrossRefGoogle Scholar
  2. Andreas EL (1989) Two-wavelength method of measuring path-averaged turbulent surface heat fluxes. J Atmos Ocean Technol 6(2): 280–292CrossRefGoogle Scholar
  3. Andreas EL (1990) Three-wavelength method of measuring path-averaged turbulent heat fluxes. J Atmos Ocean Technol 7(6): 801–814CrossRefGoogle Scholar
  4. Asanuma J, Tamagawa I, Ishikawa H, Ma YM, Hayashi T, Qi YQ, Wang JM (2007) Spectral similarity between scalars at very low frequencies in the unstable atmospheric surface layer over the Tibetan plateau. Boundary-Layer Meteorol 122(1): 85–103CrossRefGoogle Scholar
  5. Assouline S, Tyler SW, Tanny J, Cohen S, Bou-Zeid E, Parlange MB, Katul GG (2008) Evaporation from three water bodies of different sizes and climates: measurements and scaling analysis. Adv Water Resour 31(1): 160–172CrossRefGoogle Scholar
  6. Beyrich F, Kouznetsov RD, Leps JP, Ludi A, Meijninger WML, Weisensee U (2005) Structure parameters for temperature and humidity from simultaneous eddy-covariance and scintillometer measurements. Meteorol Z 14(5): 641–649CrossRefGoogle Scholar
  7. Beyrich F, Mengelkamp HT (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment—an overview. Boundary-Layer Meteorol 121(1): 5–32CrossRefGoogle Scholar
  8. Bou-Zeid E, Meneveau C, Parlange MB (2004) Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness. Water Resour Res 40(2): 1–18CrossRefGoogle Scholar
  9. Bou-Zeid E, Vercauteren N, Parlange MB, Meneveau C (2008) Scale dependence of subgrid-scale model coefficients: an a priori study. Phys Fluids 20(11): 115106-1–115106-6CrossRefGoogle Scholar
  10. Bou-Zeid E, Higgins C, Huwald H, Meneveau C, Parlange MB (2010) Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier. J Fluid Mech 665: 480–515CrossRefGoogle Scholar
  11. Bradley EF, Antonia RA, Chambers AJ (1982) Streamwise heat-flux budget in the atmospheric surface-layer. Boundary-Layer Meteorol 23(1): 3–15CrossRefGoogle Scholar
  12. Brutsaert W (1998) Land-surface water vapor and sensible heat flux: spatial variability, homogeneity, and measurement scales. Water Resour Res 34(10): 2433–2442CrossRefGoogle Scholar
  13. Brutsaert W (2005) Hydrology: an introduction. Cambridge University Press, New York, 605 ppGoogle Scholar
  14. Cava D, Katul GG, Sempreviva AM, Giostra U, Scrimieri A (2008) On the anomalous behaviour of scalar flux–variance similarity functions within the canopy sub-layer of a dense alpine forest. Boundary-Layer Meteorol 128(1): 33–57CrossRefGoogle Scholar
  15. Chamecki M, Dias NL (2004) The local isotropy hypothesis and the turbulent kinetic energy dissipation rate in the atmospheric surface layer. Q J Roy Meteorol Soc 130(603): 2733–2752CrossRefGoogle Scholar
  16. De Bruin HAR, Kohsiek W, Vandenhurk BJJM (1993) A verification of some methods to determine the fluxes of momentum, sensible heat, and water-vapor using standard-deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63(3): 231–257CrossRefGoogle Scholar
  17. De Bruin HAR, Van Den Hurk B, Kroon LJM (1999) On the temperature–humidity correlation and similarity. Boundary-Layer Meteorol 93(3): 453–468CrossRefGoogle Scholar
  18. De Bruin HAR et al (1995) The scintillation method tested over a dry vineyard area. Boundary-Layer Meteorol 76(1–2):25–40Google Scholar
  19. De Bruin HAR et al (2002) Displaced-beam small aperture scintillometer test. Part I: The WINTEX data-set. Boundary-Layer Meteorol 105(1):129–148Google Scholar
  20. Detto M, Katul G, Mancini M, Montaldo N, Albertson JD (2008) Surface heterogeneity and its signature in higher-order scalar similarity relationships. Agric For Meteorol 148(6-7): 902–916CrossRefGoogle Scholar
  21. Dias NL, Brutsaert W (1996) Similarity of scalars under stable conditions. Boundary-Layer Meteorology 80(4): 355–373CrossRefGoogle Scholar
  22. Dias NL et al (2004) A study of spectra, structure and correlation functions and their implications for the stationarity of surface-layer turbulence. Boundary-Layer Meteorol 110(2):165–189Google Scholar
  23. Garratt JR (1990) The internal boundary-layer—a review. Boundary-Layer Meteorol 50(1-4): 171–203CrossRefGoogle Scholar
  24. Green AE, Astill MS, McAneney KJ, Nieveen JP (2001) Path-averaged surface fluxes determined from infrared and microwave scintillometers. Agric For Meteorol 109(3): 233–247CrossRefGoogle Scholar
  25. Hartogensis OK, De Bruin HAR (2005) Monin–Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116(2): 253–276CrossRefGoogle Scholar
  26. Hartogensis OK et al (2002) Displaced-beam small aperture scintillometer test. Part II: CASES-99 stable boundary-layer experiment. Boundary-Layer Meteorol 105(1):149–176Google Scholar
  27. Hill RJ (1989) Implications of Monin–Obukhov similarity theory for scalar quantities. J Atmos Sci 46(14): 2236–2244CrossRefGoogle Scholar
  28. Hill RJ (1997) Algorithms for obtaining atmospheric surface-layer fluxes from scintillation measurements. J Atmos Oceanic Technol 14(3): 456–467CrossRefGoogle Scholar
  29. Hill RJ, Clifford SF, Lawrence RS (1980) Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure-fluctuations. J Opt Soc Am 70(10): 1192–1205CrossRefGoogle Scholar
  30. Huwald H, Higgins CW, Boldi MO, Bou-Zeid E, Lehning M, Parlange MB (2009) Albedo effect on radiative errors in air temperature measurements. Water Resour Res 45:1–13Google Scholar
  31. Katul G, Hsieh CI, Sigmon J (1997) Energy-inertial scale interactions for velocity and temperature in the unstable atmospheric surface layer. Boundary-Layer Meteorol 82(1): 49–80CrossRefGoogle Scholar
  32. Katul GG, Hsieh CI (1999) A note on the flux–variance similarity relationships for heat and water vapour in the unstable atmospheric surface layer. Boundary-Layer Meteorology 90(2): 327–338CrossRefGoogle Scholar
  33. Katul GG, Sempreviva AM, Cava D (2008) The temperature–humidity covariance in the marine surface layer: a one-dimensional analytical model. Boundary-Layer Meteorol 126(2): 263–278CrossRefGoogle Scholar
  34. Kleissl J et al (2008) Large aperture scintillometer intercomparison study. Boundary-Layer Meteorol 128(1):133–150Google Scholar
  35. Kleissl J et al (2009) Scintillometer intercomparison study—continued. Boundary-Layer Meteorol 130(3):437–443Google Scholar
  36. Kohsiek W (1982) Measuring Ct2, Cq2, and Ctq in the unstable surface-layer, and relations to the vertical fluxes of heat and moisture. Boundary-Layer Meteorol 24(1): 89–107CrossRefGoogle Scholar
  37. Lamaud E, Irvine M (2006) Temperature–humidity dissimilarity and heat-to-water-vapour transport efficiency above and within a pine forest canopy: the role of the Bowen ratio. Boundary-Layer Meteorol 120(1): 87–109CrossRefGoogle Scholar
  38. Lee X et al (2004) Micrometeorological fluxes under the influence of regional and local advection: a revisit. Agric For Meteorol 122(1–2):111–124Google Scholar
  39. Leijnse H, Uijlenhoet R, Stricker JNM (2007) Hydrometeorological application of a microwave link: 1. Evaporation. Water Resour Res 43(4):W04416Google Scholar
  40. Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140(2): 243–262CrossRefGoogle Scholar
  41. Ludi A, Beyrich F, Matzler C (2005) Determination of the turbulent temperature–humidity correlation from scintillometric measurements. Boundary-Layer Meteorol 117(3): 525–550CrossRefGoogle Scholar
  42. Mahrt L (1991) Boundary-layer moisture regimes. Q J Roy Meteorol Soc 117(497): 151–176CrossRefGoogle Scholar
  43. Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90(3): 375–396CrossRefGoogle Scholar
  44. McNaughton KG, Brunet Y (2002) Townsend’s hypothesis, coherent structures and Monin-Obukhov similarity. Boundary-Layer Meteorol 102(2):161–175Google Scholar
  45. McNaughton KG, Laubach J (1998) Unsteadiness as a cause of non-equality of eddy diffusivities for heat and vapour at the base of an advective inversion. Boundary-Layer Meteorol 88(3): 479–504CrossRefGoogle Scholar
  46. McNaughton KG, Laubach J (2000) Power spectra and cospectra for wind and scalars in a disturbed surface layer at the base of an advective inversion. Boundary-Layer Meteorol 96(1–2):143–185Google Scholar
  47. Meijninger WML, Beyrich F, Luedi A, Kohsiek W, De Bruin HAR (2006) Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—a contribution to LITFASS-2003. Boundary-Layer Meteorol 121(1): 89–110CrossRefGoogle Scholar
  48. Meijninger WML, Green AE, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002a) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface—Flevoland field experiment. Boundary-Layer Meteorol 105(1): 63–83CrossRefGoogle Scholar
  49. Meijninger WML, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002b) Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface—Flevoland field experiment. Boundary-Layer Meteorol 105(1): 37–62CrossRefGoogle Scholar
  50. Moene AF (2003) Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation. Boundary-Layer Meteorol 107(3): 635–653CrossRefGoogle Scholar
  51. Moene AF, Meijninger, WML, Hartogensis OK, Kohsiek W, De Bruin HAR (2004) A review of the relationships describing the signal of a Large Aperture Scintillometer. Internal Report 2004/2. Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands, 40 ppGoogle Scholar
  52. Moene AF, Schuttemeyer D (2008) The effect of surface heterogeneity on the temperature–humidity correlation and the relative transport efficiency. Boundary-Layer Meteorol 129(1): 99–113CrossRefGoogle Scholar
  53. Moeng CH, Wyngaard JC (1986) An analysis of closures for pressure-scalar covariances in the convective boundary layer. J Atmos Sci 43(21): 2499–2513CrossRefGoogle Scholar
  54. Moriwaki R, Kanda M (2006) Local and global similarity in turbulent transfer of heat, water vapour, and CO2 in the dynamic convective sublayer over a suburban area. Boundary-Layer Meteorol 120(1): 163–179CrossRefGoogle Scholar
  55. Nadeau DF et al (2009) Estimation of urban sensible heat flux using a dense wireless network of observations. Environ Fluid Mech 9(6):635–653Google Scholar
  56. Sempreviva AM, Gryning SE (2000) Mixing height over water and its role on the correlation between temperature and humidity fluctuations in the unstable surface layer. Boundary-Layer Meteorol 97(2): 273–291CrossRefGoogle Scholar
  57. Sempreviva AM, Hojstrup J (1998) Transport of temperature and humidity variance and covariance in the marine surface layer. Boundary-Layer Meteorol 87(2): 233–253CrossRefGoogle Scholar
  58. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 670 ppGoogle Scholar
  59. Thiermann V, Grassl H (1992) The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Boundary-Layer Meteorology 58: 367–389CrossRefGoogle Scholar
  60. Vercauteren N, Bou-Zeid E, Parlange MB, Lemmin U, Huwald H, Selker J, Meneveau C (2008) Subgrid-scale dynamics of water vapor, heat, and momentum over a lake. Boundary-Layer Meteorol 128(2): 205–228CrossRefGoogle Scholar
  61. Wang TI, Ochs GR, Clifford SF (1978) Saturation-resistant optical scintillometer to measure C–N(2). J Opt Soc Am 68(3): 334–338CrossRefGoogle Scholar
  62. Williams CA, Scanlon TM, Albertson JD (2007) Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer. Boundary-Layer Meteorol 122(1): 149–165CrossRefGoogle Scholar
  63. Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, Cambridge, New York, 393 ppGoogle Scholar
  64. Wyngaard JC, Izumi Y, Collins SA (1971) Behavior of refractive-index-structure parameter near ground. J Opt Soc Am 61(12): 1646CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Freelance ConsultantBilthovenThe Netherlands
  3. 3.King’s CollegeLondonUK

Personalised recommendations