Boundary-Layer Meteorology

, Volume 141, Issue 3, pp 369–391 | Cite as

Convective Boundary-Layer Entrainment: Short Review and Progress using Doppler Lidar

  • K. Träumner
  • Ch. Kottmeier
  • U. Corsmeier
  • A. Wieser
Article

Abstract

The entrainment of air from the free atmosphere into the convective boundary layer is reviewed and further investigated using observations from a 2 μm Doppler lidar. It is possible to observe different individual processes entraining air into the turbulent layer, which develop with varying stability of the free atmosphere. These different processes are attended by different entrainment-zone thicknesses and entrainment velocities. Four classes of entrainment parametrizations, which describe relationships between the fundamental parameters of the process, are examined. Existing relationships between entrainment-zone thickness and entrainment velocity are basically confirmed using as scaling parameters boundary-layer height and convective velocity. An increase in the correlation coefficient between stability parameters based on the stratification of the free atmosphere and entrainment velocity (and entrainment-zone thickness respectively) up to 200% was possible using more suitable length and velocity scales.

Keywords

Convective boundary layer Doppler lidar Entrainment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angevine W (2008) Transitional, entraining, cloudy, and coastal boundary layers. Acta Geophys 56(1): 2–20CrossRefGoogle Scholar
  2. Angevine W, White A, Avery S (1994) Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Boundary-Layer Meteorol 68: 375–385CrossRefGoogle Scholar
  3. Asimakopoulos D, Helmis C, Michopoulos J (2004) Evaluation of sodar methods for the determination of the atmospheric boundary layer mixing height. Meteorol Atmos Phys 85: 85–92CrossRefGoogle Scholar
  4. Baines W (1975) Entrainment by a plume or jet at a density interface. J Fluid Mech 68: 309–320CrossRefGoogle Scholar
  5. Barthlott C, Kalthoff N, Fiedler F (2003) Influence of high-frequency radiation on turbulence measurements on a 200 m tower. Meteorol Z 12(2): 67–71CrossRefGoogle Scholar
  6. Batchvarova E, Cai X, Gryning SE, Steyn D (1999) Modelling internal boundary-layer development in a region with a complex coastline. Boundary-Layer Meteorol 90: 1–20CrossRefGoogle Scholar
  7. Beyrich F, Gryning SE (1998) Estimation of the entrainment zone depth in a shallow convective boundary layer from sodar data. J Appl Meteorol 37: 255–268CrossRefGoogle Scholar
  8. Boers R (1989) A parameterization of the depth of the entraiment zone. J Appl Meteorol 28: 107–111CrossRefGoogle Scholar
  9. Boers R, Eloranta E (1986) Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer. Boundary-Layer Meteorol 34: 357–375CrossRefGoogle Scholar
  10. Boers R, Eloranta E, Coulter R (1984) Lidar observations of mixed layer dynamics: tests of parameterized entrainment models. J Clim Appl Meteorol 23: 247–266CrossRefGoogle Scholar
  11. Brooks I (2003) Finding boundary layer top: application of a wavelet covariance transform to lidar backscatter profiles. J Atmos Ocean Technol 20: 1092–1105CrossRefGoogle Scholar
  12. Browning K, Wexler R (1968) The determination of kinematic properties of a wind field using doppler radar. J Appl Meteorol 7: 105–113CrossRefGoogle Scholar
  13. Browning K, Blyth A, Clark P, Corsmeier U, Morcrette C, Agnew J, Ballard S, Bamber D, Barthlott C, Bennett L, Beswick K, Bitter M, Bozier K, Brooks B, Collier C, Davies F, Deny B, Dixon M, Feuerle T, Forbes R, Gaffard C, Gray M, Hankers R, Hewison T, Kalthoff N, Khodayar S, Kohler M, Kottmeier C, Kraut S, Kunz M, Ladd D, Lean H, Lenfant J, Li Z, Marsham J, McGregor J, Mobbs S, Nicol J, Norton E, Parker D, Perry F, Ramatschi M, Ricketts H, Roberts N, Russell A, Schulz H, Slack E, Vaughan G, Waight J, Watson R, Webb A, Wareing D, Wieser A (2007) The convective storm initiation project. Bull Am Meteorol Soc 88(12): 1939–1955CrossRefGoogle Scholar
  14. Calhoun R, Wieser A, Princevac M, Kottmeier C (2005) Comparison of lidar data with tower, profiler, radiosonde, and tethersonde data. In: European Geosciences Union General Assembly 2005, Vienna, Austria, 24–29 April 2005Google Scholar
  15. Canut G, Lothon M, Said F, Lohou F (2010) Observation of entrainment at the interface between monsoon flow and the saharan air layer. Q J Roy Meteorol Soc 136: 34–46CrossRefGoogle Scholar
  16. Carruthers D, Hunt J (1986) Velocity fluctuations near an interface between a turbulent region and a stably stratified layer. J Fluid Mech 165: 475–501CrossRefGoogle Scholar
  17. Carruthers D, Moeng CH (1987) Waves in the overlying inversion of the convective boundary layer. J Atmos Sci 44(14): 1801–1808CrossRefGoogle Scholar
  18. Caughey S, Palmer S (1979) Some aspects of turbulence structure through the depth of the convective boundary layer. Q J Roy Meteorol Soc 105: 811–827CrossRefGoogle Scholar
  19. Cohn S, Angevine W (2000) Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J Appl Meteorol 39: 1233–1247CrossRefGoogle Scholar
  20. Conzemius R, Fedorovich E (2006) Dynamics of sheared convective boundary layer entrainment. Part I: methodological background and large-eddy simulations. J Atmos Sci 63: 1151–1178CrossRefGoogle Scholar
  21. Couvreux F, Guichard F, Masson V, Redelsperger JL (2007) Negative water vapour skewness and dry tongues in the convective boundary layer: observations and large-eddy simulation budget analysis. Boundary-Layer Meteorol 123: 269–294CrossRefGoogle Scholar
  22. Crapper P, Linden P (1974) The structure of turbulent density interfaces. J Fluid Mech 65(1): 45–63CrossRefGoogle Scholar
  23. Davis K, Lenschow D, Oncley S, Kiemle C, Ehret G, Giez A, Mann J (1997) Role of entrainment in surface–atmosphere interactions over the boreal forest. J Geophys Res 102(D24): 29219–29230CrossRefGoogle Scholar
  24. Davis K, Gamage N, Hagelberg C, Kiemle C, Lenschow D, Sullivan P (2000) An objective method for deriving atmospheric structure from airborne lidar observations. J Atmos Ocean Technol 17: 1455–1468CrossRefGoogle Scholar
  25. Deardorff J (1970) Convective velocity and temperature scales for the unstable planetary boundary layer and for rayleigh convection. J Atmos Sci 27: 1211–1213CrossRefGoogle Scholar
  26. Deardorff J (1979) Prediction of convective mixed-layer entrainment for realistic capping-inversion structure. J Atmos Sci 36: 424–436CrossRefGoogle Scholar
  27. Deardorff J (1983) A multi-limit mixed-layer entrainment formulation. J Phys Oceanogr 13: 988–1002CrossRefGoogle Scholar
  28. Deardorff J, Willis G, Stockton B (1980) Laboratory studies of the entrainment zone of a convectively mixed layer. J Fluid Mech 100: 41–64CrossRefGoogle Scholar
  29. Dohan K, Sutherland B (2003) Internal waves generated from a turbulent mixed region. Phys Fluids 15(2): 488–498CrossRefGoogle Scholar
  30. Driedonks A (1982) Models and observations of the growth of the atmospheric boundary layer. Boundary-Layer Meteorol 23: 283–306CrossRefGoogle Scholar
  31. Fedorovich E, Conzemius R, Mironov D (2004) Convective entrainment into a shear-free, linearly stratified atmosphere: bulk models reevaluated through large eddy simulations. J Atmos Sci 61: 281–295CrossRefGoogle Scholar
  32. Fernando H (1991) Turbulent mixing in stratified fluids. Annu Rev Fluid Mech 23: 455–493CrossRefGoogle Scholar
  33. Fernando H, Hunt J (1996) Some aspects of turbulence and mixing in stably stratified layers. Dyn Atmos Oceans 23: 35–62CrossRefGoogle Scholar
  34. Fernando H, Hunt J (1997) Turbulence, waves and mixing at shear-free density interfaces. Part 1: a theoretical model. J Fluid Mech 347: 197–234CrossRefGoogle Scholar
  35. Flamant C, Pelon J, Flamant P, Durand P (1997) Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Boundary-Layer Meteorol 83: 247–284CrossRefGoogle Scholar
  36. Frehlich R (2001) Estimation of velocity error for Doppler lidar measurements. J Atmos Ocean Technol 18: 1628–1639CrossRefGoogle Scholar
  37. Gryning SE, Batchvarova E (1994) Parametrization of the depth of the entrainment zone above the daytime boundary layer. Q J Roy Meteorol Soc 120: 47–58CrossRefGoogle Scholar
  38. Haegeli P, Steyn D, Strawbridge K (2000) Spatial and temporal variability of mixed-layer depth and entrainment-zone thickness. Boundary-Layer Meteorol 97: 47–71CrossRefGoogle Scholar
  39. Hannoun I, List EJ (1988) Turbulent mixing at a shear-free density interface. J Fluid Mech 189: 211–234CrossRefGoogle Scholar
  40. Hunt J (1998) Eddy Dynamics and kinematics of convective turbulence, vol 513: bouyant convection in geophysical flows. Kluwer, Dordrecht, pp, pp 41–82Google Scholar
  41. Kalthoff N, Fiebig-Wittmaack M, Meixner C, Kohler M, Uriarte M, Bischoff-Gaux I, Gonzales E (2006) The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the andes. J Arid Environ 65: 420–443CrossRefGoogle Scholar
  42. Kalthoff N, Adler B, Barthlott C, Corsmeier U, Mobbs S, Crewell S, Träumner K, Kottmeier C, Wieser A, Smith V, Girolamo PD (2009) The impact of convergence zones on the initiation of deep convection: a case study from cops. Atmos Res 93: 680–694CrossRefGoogle Scholar
  43. Kim SW, Park SU, Moeng CH (2003) Entrainment processes in the convective boundary layer with varying wind shear. Boundary-Layer Meteorol 108: 221–245CrossRefGoogle Scholar
  44. Kim SW, Park SU, Pino D, de Arellano JVG (2006) Parameterization of entrainment in a sheared convective boundary layer using a first-order jump model. Boundary-Layer Meteorol 120: 455–475CrossRefGoogle Scholar
  45. Kottmeier C, Kalthoff N, Barthlott C, Corsmeier U, van Baelen J, Behrendt A, Behrendt R, Blyth A, Coulter R, Crewell S, di Girolamo P, Dorninger M, Flamant C, Foken T, Hagen M, Hauck C, Höller H, Konow H, Kunz M, Mahlke H, Mobbs S, Richard E, Steinacker R, Weckwerth T, Wieser A, Wulfmeyer V (2008) Mechanisms initiating deep convection over complex terrain during cops. Meteorol Z 17(6): 931–948CrossRefGoogle Scholar
  46. Lammert A, Bösenberg J (2006) Determination of the convective boundary-layer height with laser remote sensing. Boundary-Layer Meteorol 119: 159–170CrossRefGoogle Scholar
  47. Lenschow D, Stankov B (1986) Length scales in the convective boundary layer. J Atmos Sci 43(12): 1198–1209CrossRefGoogle Scholar
  48. Lenschow D, Wyngaard J, Pennell W (1980) Mean field and second momentum budgets in a baroclinic convective boundary layer. J Atmos Sci 37: 1313–1326CrossRefGoogle Scholar
  49. Lenschow D, Krummel P, Siems S (1999) Measuring entrainment, divergence, and vorticity on the mesoscale from aircraft. J Atmos Ocean Technol 16: 1384–1400CrossRefGoogle Scholar
  50. Lenschow D, Wulfmeyer V, Senff C (2000a) Measuring second- through fourth-order moments in noisy data. J Atmos Ocean Technol 17: 1330–1347CrossRefGoogle Scholar
  51. Lenschow D, Zhou M, Zeng X, Chen L, Xu X (2000b) Measurements of fine-scale structure at the top of marine stratocumulus. Boundary-Layer Meteorol 97: 331–357CrossRefGoogle Scholar
  52. Linden P (1973) The interaction of a vortex ring with a sharp density interface: a model for turbulent entrainment. J Fluid Mech 60: 467–480CrossRefGoogle Scholar
  53. Lothon M, Lenschow D, Mayor S (2006) Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Boundary-Layer Meteorol 121: 521–536CrossRefGoogle Scholar
  54. Lothon M, Lenschow D, Mayor S (2009) Doppler lidar measurements of vertical velocity spectra in the convective planetary boundary layer. Boundary-Layer Meteorol 132(2): 205–226CrossRefGoogle Scholar
  55. McGrath J, Fernando H, Hunt J (1997) Turbulence, waves and mixing at shear-free density interfaces. Part 2. Laboratory experiments. J Fluid Mech 347: 235–261CrossRefGoogle Scholar
  56. Melfi S, Spinhirne J, Chou SH, Palm S (1985) Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J Clim Appl Meteorol 24: 806–821CrossRefGoogle Scholar
  57. Moeng CH (1998) Stratocumulus-topped atmospheric planetary boundary layer. In: Plate E, Fedorovich E, Viegas D, Wyngaard J (eds) Buoyant convection in geophysical flows, 1st edn. Kluwer, Dordrecht, p 491Google Scholar
  58. Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the atmosphere near the ground. Tr Akad Nauk SSSR Geofiz Inst 24(151): 1963–1987Google Scholar
  59. Nelson E, Stull R, Eloranta E (1989) A progostic relationsship for entrainment zone thickness. J Appl Meteorol 28: 885–903CrossRefGoogle Scholar
  60. Nicholls S, Turton J (1986) An observation study of the structure of stratiform cloud sheets: Part II. Entrainment. Q J Roy Meteorol Soc 112: 461–480CrossRefGoogle Scholar
  61. Pino D, de Arellano JVG, Duynkerke P (2003) The contribution of shear to the evolution of a convective boundary layer. J Atmos Sci 60: 1913–1926CrossRefGoogle Scholar
  62. Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34: 1001–1027CrossRefGoogle Scholar
  63. Sorbjan Z (1990) Similarity scales and universal profiles of statistical moment in the convective boundary layer. J Appl Meteorol 29: 762–775CrossRefGoogle Scholar
  64. Steyn D, Baldi M, Hoff R (1999) The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J Atmos Ocean Technol 16: 953–959CrossRefGoogle Scholar
  65. Strang E, Fernando H (2001) Entrainment and mixing in stratified shear flows. J Atmos Sci 428: 349–386Google Scholar
  66. Stull R (1973) Inversion rise model based on penetrative convection. J Atmos Sci 30: 1092–1099CrossRefGoogle Scholar
  67. Sullivan P, Moeng C, Stevens B, Lenschow D, Mayor S (1998) Structure of the entrainment zone capping the convective atmospheric boundary layer. J Atmos Sci 55: 3042–3064CrossRefGoogle Scholar
  68. Sun J, Wang Y (2008) Effect of the entrainment flux ratio on the relationship between entrainment rate and convective Richardson number. Boundary-Layer Meteorol 126: 237–247CrossRefGoogle Scholar
  69. Tennekes H (1973) A model for the dynamics of the inversion above a convective boundary layer. J Atmos Sci 30: 558–567CrossRefGoogle Scholar
  70. Tennekes H, Driedonks A (1981) Basic entrainment equations for the atmospheric boundary layer. Boundary-Layer Meteorol 20: 515–531CrossRefGoogle Scholar
  71. Tucker S, Brewer WA, Banta R, Senff C, Sandberg S, Law D, Weickmann A, Hardesty R (2009) Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J Atmos Ocean Technol 26: 673–688CrossRefGoogle Scholar
  72. Turner J (1986) Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J Fluid Mech 173: 431–471CrossRefGoogle Scholar
  73. Van Zanten M, Duynkerke P, Cuijpers J (1999) Entrainment parameterization in convective boundary layers. J Atmos Sci 56(6): 813–828CrossRefGoogle Scholar
  74. Wulfmeyer V, Behrendt A, Bauer H, Kottmeier C, Corsmeier U, Blyth A, Craig G, Schumann U, Hagen M, Crewell S, Girolamo PD, Flamant C, Miller M, Montani A, Mobbs S, Richard E, Rotach M, Arpagaus M, Russchenberg H, Schlüssel P, König M, Gärtner V, Steinacker R, Dorninger M, Turner D, Weckwerth T, Hense A, Simmer C (2008) Research campaign: the convective and orographically induced precipitation study. Bull Am Meteorol Soc 89: 1477–1486CrossRefGoogle Scholar
  75. Yi C, Davis K, Berger B, Bakwin P (2001) Long-term observations of the dynamics of the continental planetary boundary layer. J Atmos Sci 58: 1288–1299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • K. Träumner
    • 1
  • Ch. Kottmeier
    • 1
  • U. Corsmeier
    • 1
  • A. Wieser
    • 1
  1. 1.Karlsruhe Institute of Technology, Institute for Meteorology and Climate ResearchEggenstein-LeopoldshafenGermany

Personalised recommendations