Advertisement

Boundary-Layer Meteorology

, 140:429 | Cite as

Vertical and Horizontal Transport of Energy and Matter by Coherent Motions in a Tall Spruce Canopy

  • Andrei Serafimovich
  • Christoph Thomas
  • Thomas Foken
Article

Abstract

In the framework of the EGER (ExchanGE processes in mountainous Regions) project, the contribution of coherent structures to vertical and horizontal transports in a tall spruce canopy is investigated. The combination of measurements done in both the vertical and horizontal directions allows us to investigate coherent structures, their temporal scales, their role in flux transport, vertical coupling between the sub-canopy, canopy and air above the canopy, and horizontal coupling in the sub-canopy layer. The temporal scales of coherent structures detected with the horizontally distributed systems in the sub-canopy layer are larger than the temporal scales of coherent structures detected with the vertically distributed systems. The flux contribution of coherent structures to the momentum and sensible heat transport is found to be dominant in the canopy layer. Carbon dioxide and latent heat transport by coherent structures increase with height and reach a maximum at the canopy height. The flux contribution of the ejection decreases with increasing height and becomes dominant above the canopy level. The flux fraction transported during the sweep increases with height and becomes the dominant exchange process at the upper canopy level. The determined exchange regimes indicate consistent decoupling between the sub-canopy, canopy and air above the canopy during evening, nighttime and morning hours, whereas the coupled states and coupled by sweep states between layers are observed mostly during the daytime. Furthermore, the horizontal transport of sensible heat by coherent structures is investigated, and the heterogeneity of the contribution of coherent events to the flux transport is demonstrated. A scheme to determine the horizontal coupling by coherent structures in the sub-canopy layer is proposed, and it is shown that the sub-canopy layer is horizontally coupled mainly in the wind direction. The vertical coupling in most cases is observed together with streamwise horizontal coupling, whereas the cross-stream direction is decoupled.

Keywords

Coherent structures Coupling processes Eddy-covariance method Energy and matter transport 

References

  1. Amiro B (1990) Comparison of turbulence statistics within three boreal forest canopies. Boundary-Layer Meteorol 51: 99–121. doi: 10.1007/BF00120463 CrossRefGoogle Scholar
  2. Antonia RA (1981) Conditional sampling in turbulence measurements. Annu Rev Fluid Mech 13: 131–156. doi: 10.1146/annurev.fl.13.010181.001023 CrossRefGoogle Scholar
  3. Antonia RA, Browne LWB, Bisset DK, Fulachier L (1987) A description of the organized motion in the turbulent far wake of a cylinder at low Reynolds numbers. J Fluid Mech 184: 423–444CrossRefGoogle Scholar
  4. Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Boundary-Layer Meteorol 108: 397–417. doi: 10.1023/A:1024168428135 CrossRefGoogle Scholar
  5. Aubinet M, Feigenwinter C, Heinesch B, Bernhofer C, Canepa E, Lindroth A, Montagnani L, Rebmann C, Sedlak P, Gorsel EV (2010) Direct advection measurements do not help to solve the night-time CO2 closure problem: evidence from three different forests. Agric For Meteorol 150: 655–664. doi: 10.1016/j.agrformet.2010.01.016 CrossRefGoogle Scholar
  6. Baldocchi D (1992) A Lagrangian random-walk model for simulating water vapor, CO2 and sensible heat flux densities and scalar profiles over and within a soybean canopy. Boundary-Layer Meteorol 61: 113–144. doi: 10.1007/BF02033998 CrossRefGoogle Scholar
  7. Baldocchi D, Meyers T (1988) A spectral and lag-correlation analysis of turbulence in a deciduous forest canopy. Boundary-Layer Meteorol 45: 31–58. doi: 10.1007/BF00120814 CrossRefGoogle Scholar
  8. Barthlott C, Drobinski P, Fesquet C, Dubos T, Pietras C (2007) Long-term study of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 125: 1–24. doi: 10.1007/s10546-007-9190-9 CrossRefGoogle Scholar
  9. Bergström H, Högström U (1989) Turbulent exchange above a pine forest. II. Organized structures. Boundary-Layer Meteorol 49: 231–263. doi: 10.1007/BF00120972 CrossRefGoogle Scholar
  10. Bogard DG, Tiederman WG (1986) Burst detection with single-point velocity measurements. J Fluid Mech 162: 389–413. doi: 10.1017/S0022112086002094 CrossRefGoogle Scholar
  11. Cava D, Giostra U, Siqueira M, Katul G (2004) Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine forest. Boundary-Layer Meteorol 112: 129–157. doi: 10.1023/B:BOUN.0000020160.28184.a0 CrossRefGoogle Scholar
  12. Chen J, Hu F (2003) Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe River Basin, China. Boundary-Layer Meteorol 107: 429–444. doi: 10.1023/A:1022162030155 CrossRefGoogle Scholar
  13. Collineau S, Brunet Y (1993a) Detection of turbulent coherent motions in a forest canopy. Part I: Wavelet analysis. Boundary-Layer Meteorol 65: 357–379. doi: 10.1007/BF00707033 Google Scholar
  14. Collineau S, Brunet Y (1993b) Detection of turbulent coherent motions in a forest canopy. Part II: Time-scales and conditional averages. Boundary-Layer Meteorol 66: 49–73. doi: 10.1007/BF00705459 CrossRefGoogle Scholar
  15. Denmead OT, McIlroy IC (1970) Measurements of non-potential evaporation from wheat. Agric Meteorol 7: 285–302CrossRefGoogle Scholar
  16. Denmead OT, Simpson JR, Freney JR (1977) A direct field measurement of Ammonia emissions after injection of anhydrous ammonia. Soil Sci Soc Am J 41: 1001–1004CrossRefGoogle Scholar
  17. Desjardins RL (1972) CO2 measurements by eddy correlation methods. Bull Am Meteorol Soc 53: 1040Google Scholar
  18. Feigenwinter C, Vogt R (2005) Detection and analysis of coherent structures in urban turbulence. Theor Appl Climatol 81: 219–230. doi: 10.1007/s00704-004-0111-2 CrossRefGoogle Scholar
  19. Feigenwinter C, Bernhofer C, Vogt R (2004) The influence of advection on the short term CO2-budget in and above a forest canopy. Boundary-Layer Meteorol 113: 201–224. doi: 10.1023/B:BOUN.0000039372.86053.ff CrossRefGoogle Scholar
  20. Finnigan JJ (1979) Turbulence in waving wheat. II. Structure of momentum transfer. Boundary-Layer Meteorol 16: 213–236. doi: 10.1007/BF02350512 CrossRefGoogle Scholar
  21. Finnigan J (1999) A comment on the paper by Lee (1998): on micrometeorological observations of surfaceair surface exchange over tall vegetation. Agric For Meteorol 97: 55–67. doi: 10.1016/S0168-1923(99)00049-0 CrossRefGoogle Scholar
  22. Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–571. doi: 10.1146/annurev.fluid.32.1.519 CrossRefGoogle Scholar
  23. Gao W, Li BL (1993) Wavelet analysis of coherent structures at the atmosphere–forest interface. J Appl Meteorol 32: 1717–1725CrossRefGoogle Scholar
  24. Gao W, Shaw RH, Pawu KT (1989) Observation of organized structure in turbulent flow within and above a forest canopy. Boundary-Layer Meteorol 47: 349–377. doi: 10.1007/BF00122339 CrossRefGoogle Scholar
  25. Garratt J (1978) Flux profile relations above tall vegetation. Q J Roy Meteorol Soc 104: 199–211. doi: 10.1002/qj.49710443915 CrossRefGoogle Scholar
  26. Gerstberger P, Foken T, Kalbitz K (2004) The Lehstenbach and Steinkreuz chatchments in NE Bavaria, Germany. In: Matzner E (eds) Biogeochemistry of forested catchments in a changing environment: ecological Studies, vol 172. Springer, Heidelberg, pp 15–41Google Scholar
  27. Horst TW (2000) On frequency response corrections for eddy covariance flux measurements. Boundary-Layer Meteorol 94: 517–520. doi: 10.1023/A:1002427517744 CrossRefGoogle Scholar
  28. Howell JF, Mahrt L (1994) An adaptive decomposition: application to turbulence. In: Foufoula-Georgiou E, Kumar P (eds) Wavelets in geophysics, wavelet analysis and its applications, vol 4. Academic Press, San Diego, pp 107–128Google Scholar
  29. Katul G, Kuhn G, Schieldge J, Hsieh CI (1997) The ejection-sweep character of scalar fluxes in the unstable surface layer. Boundary-Layer Meteorol 83: 1–26. doi: 10.1023/A:1000293516830 CrossRefGoogle Scholar
  30. Kline SJ, Reynolds WC, Schraub FA, Rundstadler PW (1967) The structure of turbulent boundary layers. J Fluid Mech 30: 741–773. doi: 10.1017/S0022112067001740 CrossRefGoogle Scholar
  31. Krusche N, de Oliveira AP (2004) Characterization of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 110: 191–211. doi: 10.1023/A:1026096805679 CrossRefGoogle Scholar
  32. Lee X (1998) On micrometeorological observations of surfaceair surface exchange over tall vegetation. Agric For Meteorol 91: 39–49. doi: 10.1016/S0168-1923(98)00071-9 CrossRefGoogle Scholar
  33. Liu H, Foken T (2001) A modified Bowen ratio method to determine sensible and latent heat fluxes. Meteorol Z 10: 71–80. doi: 10.1127/0941-2948/2001/0010-0071 CrossRefGoogle Scholar
  34. Lu CH, Fitzjarrald DR (1994) Seasonal and diurnal variations of coherent structures over a deciduous forest. Boundary-Layer Meteorol 69: 43–69. doi: 10.1007/BF00713294 CrossRefGoogle Scholar
  35. Lu SS, Willmarth WW (1973) Measurements of the structure of Reynolds stress in a turbulent boundary layer. J Fluid Mech 60: 481–512. doi: 10.1017/S0022112073000315 CrossRefGoogle Scholar
  36. Lykossov VN, Wamser C (1995) Turbulence intermittency in the atmospheric surface layer over snow-covered sites. Boundary-Layer Meteorol 72: 393–409. doi: 10.1007/BF00709001 CrossRefGoogle Scholar
  37. Maitani T, Ohtaki E (1987) Turbulent transport processes of momentum and sensible heat in the surface layer over a paddy field. Boundary-Layer Meteorol 40: 283–293. doi: 10.1007/BF00117452 CrossRefGoogle Scholar
  38. Maitani T, Shaw RH (1990) Joint probability analysis of momentum and heat fluxes at a deciduous forest. Boundary-Layer Meteorol 52: 283–300. doi: 10.1007/BF00122091 CrossRefGoogle Scholar
  39. Mallat S, Zhong S (1992) Wavelet transform maxima and multiscale edges. In: Ruskai MB, Beylkin G, Coifman R, Daubechies I, Mallat S, Meyer Y, Raphael L (eds) Wavelets and their applications. Jones and Bartlett, Boston, pp 67–104Google Scholar
  40. Marcolla B, Cescatti A, Montagnani L, Manca G, Kerschbaumer G, Minerbi S (2005) Importance of advection in the atmospheric CO2 exchanges of an alpine fores. Agric For Meteorol 130: 193–206. doi: 10.1016/j.agrformet.2005.03.006 CrossRefGoogle Scholar
  41. Mauder M, Oncley SP, Vogt R, Weidinger T, Ribeiro L, Bernhofer C, Foken T, Kohsiek W, Bruin HARD, Liu H (2007) The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods. Boundary-Layer Meteorol 123: 29–54. doi: 10.1007/s10546-006-9139-4 CrossRefGoogle Scholar
  42. Meyers T, Baldocchi D (1991) The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agric For Meteorol 53: 207–222. doi: 10.1016/0168-1923(91)90058-X CrossRefGoogle Scholar
  43. Meyers T, Paw U KT (1986) Testing of a higher-order closure model for modeling airflow within and above plant canopies. Boundary-Layer Meteorol 37: 297–311. doi: 10.1007/BF00122991 CrossRefGoogle Scholar
  44. Meyers TP, Paw U KT (1987) Modelling the plant canopy micrometeorology with higher-order closure principles. Agric For Meteorol 41: 143–163CrossRefGoogle Scholar
  45. Moderow U, Feigenwinter C, Bernhofer C (2007) Estimating the components of the sensible heat budget of a tall forest canopy in complex terrain. Boundary-Layer Meteorol 123: 99–120. doi: 10.1007/s10546-006-9136-7 CrossRefGoogle Scholar
  46. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37: 17–35. doi: 10.1007/BF00122754 CrossRefGoogle Scholar
  47. Pasquill F (1950) Some further considerations of the measurements and indirect evaluation of natural evaporation. Q J Roy Meteorol Soc 76: 287–301CrossRefGoogle Scholar
  48. Raupach MR (1979) Anomalies in flux–gradient relationships over a forest. Boundary-Layer Meteorol 16: 467–486. doi: 10.1007/BF03163564 CrossRefGoogle Scholar
  49. Raupach MR (1981) Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J Fluid Mech 108: 363–382. doi: 10.1017/S0022112081002164 CrossRefGoogle Scholar
  50. Raupach MR (1987) A Lagrangian analysis of scalar transfer in vegetation canopies. Q J Roy Meteorol Soc 113: 107–120. doi: 10.1002/qj.49711347507 CrossRefGoogle Scholar
  51. Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol 22: 79–90. doi: 10.1007/BF00128057 CrossRefGoogle Scholar
  52. Raupach MR, Finnigan JJ, Brunet Y (1989) Coherent eddies in vegetation canopies. In: 4th Australasian conference on heat and mass transfer, Christchurch, NZ, pp 75–90Google Scholar
  53. Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78: 351–382. doi: 10.1007/BF00120941 CrossRefGoogle Scholar
  54. Shaw RH, Schumann U (1992) Large eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol 61: 47–64. doi: 10.1007/BF02033994 CrossRefGoogle Scholar
  55. Shaw RH, Zhang XJ (1992) Evidence of pressure-forced turbulent flow in a forest. Boundary-Layer Meteorol 58: 273–288. doi: 10.1007/BF02033828 CrossRefGoogle Scholar
  56. Shaw RH, Tavangar J, Ward DP (1983) Structure of the Reynolds stress in a canopy layer. J Clim Appl Meteorol 22: 1922–1931. doi: 10.1175/1520-0450(1983)022<1922:SOTRSI>2.0.CO;2 CrossRefGoogle Scholar
  57. Shaw RH, Paw U KT, Zhang XJ, Gao W, Hartog G, Neumann HH (1990) Retrieval of turbulent pressure fluctuations at the ground surface beneath a forest. Boundary-Layer Meteorol 50: 319–338. doi: 10.1007/BF00120528 CrossRefGoogle Scholar
  58. Shen SH, Leclerc MY (1997) Modelling the turbulence structure in the canopy layer. Agric For Meteorol 87: 3–25. doi: 10.1016/S0168-1923(97)00008-7 CrossRefGoogle Scholar
  59. Sörgel M, Trebs I, Serafimovich A, Moravek A, Held A, Zetzsch C (2010) Simultaneous HONO measurements in and above a forest canopy: influence of turbulent exchange on mixing ratio differences. Atmos Chem Phys Discuss 10: 21,109–21,145. doi: 10.5194/acpd-10-21109-2010 CrossRefGoogle Scholar
  60. Staebler R, Fitzjarrald D (2004) Observing subcanopy CO2 advection. Agric For Meteorol 122: 139–156. doi: 10.1016/j.agrformet.2003.09.011 CrossRefGoogle Scholar
  61. Staudt K, Foken T (2007) Documentation of reference data for the experimental areas of the Bayreuth Centre for Ecology and Environmental Research (BayCEER) at the Waldstein site. Work Report, University of Bayreuth, Department of Micrometeorology, Print, ISSN 1614-8916, 35:37 ppGoogle Scholar
  62. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publisher, Dordrecht, 670 ppGoogle Scholar
  63. Sutton OG (1953) Micrometeorology. McGraw-Hill, New York, 333 ppGoogle Scholar
  64. Swinbank W (1951) Measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J Meteorol 8: 135–145CrossRefGoogle Scholar
  65. Talmon AM, Ooms JMJGKG (1986) Simultaneous flow visualization and Reynolds-stress measurement in a turbulent boundary layer. J Fluid Mech 163: 459–478. doi: 10.1017/S0022112086002380 CrossRefGoogle Scholar
  66. Tanner CB (1960) Energy balance approach to evapotranspiration from crops. Soil Sci Soc Am Proc 24: 1–9CrossRefGoogle Scholar
  67. Tanner BD, Swiatek E, Greene JP (1993) Density fluctuations and use of the krypton hygrometer in surface flux measurements. In: Allen RG (eds) Management of irrigation and drainage systems: integrated perspectives. American Society of Civil Engineers, New York, pp 945–952Google Scholar
  68. Thomas AS, Bull MK (1983) On the role of the wall-pressure fluctuations in deterministic motions in the turbulent boundary layer. J Fluid Mech 128: 283–322. doi: 10.1017/S002211208300049X CrossRefGoogle Scholar
  69. Thomas C, Foken T (2005) Detection of long-term coherent exchange over spruce forest using wavelet analysis. Theor Appl Climatol 80: 91–104. doi: 10.1007/s00704-004-0093-0 CrossRefGoogle Scholar
  70. Thomas C, Foken T (2007a) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Boundary-Layer Meteorol 123: 317–337. doi: 10.1007/s10546-006-9144-7 CrossRefGoogle Scholar
  71. Thomas C, Foken T (2007b) Organised motion in a tall spruce canopy: temporal scales, structurespacing and terrain effects. Boundary-Layer Meteorol 122: 123–147. doi: 10.1007/s10546-006-9087-z CrossRefGoogle Scholar
  72. Thorthwaite CW, Holzman B (1942) Measurement of evaporation from land and water surface. USDA Tech Bull 817: 1–75Google Scholar
  73. van Dijk A, Kohsiek W, de Bruin HAR (2003) Oxygen sensitivity of krypton and Lyman-alpha hygrometers. J Atmos Ocean Technol 20: 143–151. doi: 10.1175/1520-0426(2003)020<0143:OSOKALT>2.0.CO;2 CrossRefGoogle Scholar
  74. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14: 512–526. doi: 10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2 CrossRefGoogle Scholar
  75. Wallace JM, Eckelmann H, Brodkey RS (1972) The wall region in turbulent shear flow. J Fluid Mech 54: 39–48. doi: 10.1017/S0022112072000515 CrossRefGoogle Scholar
  76. Webb EK, Pearman GI, Leuning R (1980) Correction of the flux measurements for density effects due to heat and water vapour transfer. Q J Roy Meteorol Soc 106: 85–100. doi: 10.1002/qj.49710644707 CrossRefGoogle Scholar
  77. Wilczak JM (1984) Large-scale eddies in the unstably stratified atmospheric boundary surface layer. Part I: Velcoity and temperature structure. J Atmos Sci 41: 3537–3550. doi: 10.1175/1520-0469(1984)041<3537:LSEITU>2.0.CO;2 CrossRefGoogle Scholar
  78. Wilczak JM, Businger JA (1984) Large-scale eddies in the unstably stratified atmospheric boundary surface layer. Part II: Turbulent pressure fluctuations and the budgets of heat fkux, stress and turbulent kinetic energy. J Atmos Sci 41: 3551–3567CrossRefGoogle Scholar
  79. Wilczak JM, Tillman JE (1980) The three-dimensional structure of convection in the atmospheric surface layer. J Atmos Sci 37: 2424–2443. doi: 10.1175/1520-0469(1980)037<2424:TTDSOC>2.0.CO;2 CrossRefGoogle Scholar
  80. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99: 127–150. doi: 10.1023/A:1018966204465 CrossRefGoogle Scholar
  81. Wyngaard J, Cote O, Izumi Y (1971) Local free convection, similarity, and the budgets of shear stress and heat flux. J Atmos Sci 28: 1171–1182. doi: 10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2 CrossRefGoogle Scholar
  82. Yi C, Davis K, Bakwin P, Berger B, Marr L (2000) Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower. J Geophys Res 105: 9991–9999. doi: 10.1029/2000JD900080 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Andrei Serafimovich
    • 1
  • Christoph Thomas
    • 2
  • Thomas Foken
    • 1
  1. 1.Department of MicrometeorologyUniversity of BayreuthBayreuthGermany
  2. 2.Atmospheric Sciences Group, College of Oceanic and Atmospheric SciencesOregon State UniversityCorvallisUSA

Personalised recommendations