Skip to main content

Evaluation of the Diurnal Cycle in the Atmospheric Boundary Layer Over Land as Represented by a Variety of Single-Column Models: The Second GABLS Experiment

Abstract

We present the main results from the second model intercomparison within the GEWEX (Global Energy and Water cycle EXperiment) Atmospheric Boundary Layer Study (GABLS). The target is to examine the diurnal cycle over land in today’s numerical weather prediction and climate models for operational and research purposes. The set-up of the case is based on observations taken during the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99), which was held in Kansas, USA in the early autumn with a strong diurnal cycle with no clouds present. The models are forced with a constant geostrophic wind, prescribed surface temperature and large-scale divergence. Results from 30 different model simulations and one large-eddy simulation (LES) are analyzed and compared with observations. Even though the surface temperature is prescribed, the models give variable near-surface air temperatures. This, in turn, gives rise to differences in low-level stability affecting the turbulence and the turbulent heat fluxes. The increase in modelled upward sensible heat flux during the morning transition is typically too weak and the growth of the convective boundary layer before noon is too slow. This is related to weak modelled near-surface winds during the morning hours. The agreement between the models, the LES and observations is the best during the late afternoon. From this intercomparison study, we find that modelling the diurnal cycle is still a big challenge. For the convective part of the diurnal cycle, some of the first-order schemes perform somewhat better while the turbulent kinetic energy (TKE) schemes tend to be slightly better during nighttime conditions. Finer vertical resolution tends to improve results to some extent, but is certainly not the solution to all the deficiencies identified.

References

  1. Andrén A (1990) Evolution of a turbulence closure scheme suitable for air-pollution applications. J Appl Meteorol 29: 224–239. doi:10.1175/1520-0450(1990)029<0224:EOATCS>2.0.CO;2

    Article  Google Scholar 

  2. Angevine WM (2008) Transitional, entraining, cloudy, and coastal boundary layers. Acta Geophys 56: 2–20

    Article  Google Scholar 

  3. Angevine WM, Baltink HK, Bosveld FC (2001) Observations of the morning transition of the convective boundary layer. Boundary-Layer Meteorol 101: 209–227

    Article  Google Scholar 

  4. Basu S, Holtslag AAM, van de Wiel BJH, Moene AF, Steeneveld GJ (2008) An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophys 56: 88–99

    Article  Google Scholar 

  5. Bazile E, Beffrey G, Joly M, Marzouki M (2005) Interactive mixing length and modifications of the exchange coefficient for the stable case. ALADIN Newsl 27: 152–156

    Google Scholar 

  6. Beare RJ (2008) The role of shear in the morning transition boundary layer. Boundary-Layer Meteorol 129: 395–410. doi:10.1007/s10546-008-9324-8

    Article  Google Scholar 

  7. Beare RJ, MacVean MK, Holtslag AAM, Cuxart J, Esau I, Golaz J-C, Jimenez MA, Khairoutdinov M, Kosovic B, Lewellen D, Lund TS, Lundquist JK, McCabe A, Moene AF, Noh Y, Raasch S, Sullivan PP (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118: 247–272. doi:10.1007/s10546-004-2820-6

    Article  Google Scholar 

  8. Bélair S, Mailhot J, Strapp JW, MacPherson JI (1999) An examination of local versus nonlocal aspects of a TKE-based boundary-layer scheme in clear convective conditions. J Appl Meteorol 38: 1499–1518

    Article  Google Scholar 

  9. Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30: 327–341

    Article  Google Scholar 

  10. Bosveld FC, de Bruijn C, Holtslag AAM (2008) Intercomparison of single-column models for GABLS3 preliminary results. In: The symposium on boundary layers and turbulence, Stockholm, Sweden, American Meteorological Society, 8A.5, preprint

  11. Bougeault P, Lacarrère P (1989) Parameterization of orography-induced turbulence in a meso-beta-scale model. Mon Weather Rev 117: 1872–1890

    Article  Google Scholar 

  12. Bouteloup Y, Bazile E, Bouyssel F, Marquet P (2009) Evolution of the physical parametrizations of ARPEGE and ALADIN-MF. ALADIN Newsl 35: 48–58

    Google Scholar 

  13. Bou-Zeid E, Meneveau C, Parlange MB (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17: 025105

    Article  Google Scholar 

  14. Bretherton C, Park S (2009) Moist turbulence parameterization in the community atmosphere model. J Clim 12: 3422–3448

    Article  Google Scholar 

  15. Brutsaert WH (1982) Evaporation into the atmosphere. Reidel, Dordrecht

    Google Scholar 

  16. Cuxart J, Bougeault P, Redelsperger J-L (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126: 1–30

    Article  Google Scholar 

  17. Cuxart J, Holtslag AAM, Beare RJ, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld G-J, Svensson G, Taylor P, Weng W, Wunsch S, Xu K-M (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118: 273–303. doi:10.1007/s10546-005-3780-1

    Article  Google Scholar 

  18. Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the community climate system model. J Clim 5: 930–951

    Article  Google Scholar 

  19. Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three dimensional model. Boundary-Layer Meteorol 7: 199–226

    Google Scholar 

  20. Dudhia J (2005) The weather research and forecast model version 2: update. WRF/MM5 users’ workshop, June 2005

  21. Duynkerke PG (1991) Radiation fog: a comparison of model simulation with detailed observations. Mon Weather Rev 119: 324–341

    Article  Google Scholar 

  22. Freedman FR, Jacobson MZ (2002) Transport-dissipation analytical solutions to the E-epsilon turbulence model and their role in predictions of the neutral ABL. Boundary-Layer Meteorol 102: 117–138

    Article  Google Scholar 

  23. Freedman FR, Jacobson MZ (2003) Modification of the standard epsilon-equation for the stable ABL through enforced consistency with Monin-Obukhov similarity theory. Boundary-Layer Meteorol 106: 383–410

    Article  Google Scholar 

  24. Golaz J-C, Larson VE, Cotton WR (2002) A PDF-based model for boundary layer clouds, part I: method and model description. J Atmos Sci 59: 3540–3551

    Article  Google Scholar 

  25. Hartogensis OK, de Bruin HAR (2005) Monin-Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116: 253–276

    Article  Google Scholar 

  26. Hodur RM (1997) The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon Weather Rev 125: 1414–1430

    Article  Google Scholar 

  27. Holtslag AAM (2003) GABLS initiates intercomparison for stable boundary layers. GEWEX News 13: 7–8

    Google Scholar 

  28. Holtslag AAM (2006) GEWEX Atmospheric Boundary-Layer Study (GABLS) on stable boundary layers. Boundary-Layer Meteorol 118: 243–246

    Article  Google Scholar 

  29. Holtslag AAM, Boville B (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6: 1825–1842

    Article  Google Scholar 

  30. Holtslag AAM, Steeneveld GJ, van de Wiel BJH (2007) Role of land-surface temperature feedback on model performance for the stable boundary layer. Boundary-Layer Meteorol 118: 273–303

    Google Scholar 

  31. Hong SY, Pan HL (1996) Non-local boundary layer diffusion in a medium-range forecast model. Mon Weather Rev 124: 2322–2339

    Article  Google Scholar 

  32. Kumar V, Kleissl J, Meneveau C, Parlange MB (2006) Large-eddy simulation of a diurnal cycle in the turbulent atmospheric boundary layer: atmospheric stability and scaling issues. Water Resour Res 42: W06D09

    Article  Google Scholar 

  33. Kumar V, Svensson G, Holtslag AAM, Parlange MB, Meneveau C (2010) Impact of surface flux formulations and geostrophic forcing on large-eddy simulations of the diurnal atmospheric boundary layer flow. J Meteorol Climatol 49: 1496–1516. doi:10.1175/2010JAMC2145.1

    Article  Google Scholar 

  34. Lafore JP, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Héreil P, Mascart P, Masson V, Pinty JP, Redelsperger JL, Richard E, de Arellano JV-G (1998) The Méso-NH atmospheric simulation system, part I: adiabatic formulation and control simulation. Ann Geophys 16: 90–109

    Article  Google Scholar 

  35. Larson VE, Golaz J-C (2005) Using probability density functions to derive consistent closure relationships among higher-order moments. Mon Weather Rev 133: 1023–1042

    Article  Google Scholar 

  36. LeMone MA, Grossman RL, Coulter RL, Wesley ML, Klazura GE, Poulos GS, Blumen W, Lundquist JK, Cuenca RH, Kelly SF, Brandes EA, Oncley SP, McMillen RT, Hicks BB (2000) Land-atmosphere interaction research, early results, and opportunities in the Walnut River Watershed in southeast Kansas: CASES and ABLE. Bull Am Meteorol Soc 13: 757–779

    Article  Google Scholar 

  37. Lenderink G, Holtslag AAM (2004) An updated length scale formulation for turbulent mixing in clear and cloudy boundary layers. Q J Roy Meteorol Soc 130: 3405–3428

    Article  Google Scholar 

  38. Lock AP, Brown AR, Bush MR, Martin GM, Smith RNB (2000) A new boundary layer mixing scheme, part I: scheme description and single-column model tests. Mon Weather Rev 128: 3187–3199

    Article  Google Scholar 

  39. Louis JF (1979) A parametric model of the vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol 17: 187–202

    Article  Google Scholar 

  40. Mauritsen T, Svensson G, Zilitinkevich S, Esau I, Enger L, Grisogono B (2007) A total turbulent energy closure model for neutral and stably stratified atmospheric boundary layers. J Atmos Sci 64: 4113–4126

    Article  Google Scholar 

  41. Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31: 1791–1806

    Article  Google Scholar 

  42. Noh Y, Cheon WG, Hong SY, Raasch S (2003) Improvement of the K-profile model for the planetary boundary layer based on large-eddy simulation data. Boundary-Layer Meteorol 107: 401–427

    Article  Google Scholar 

  43. Pleim JE (2007a) A combined local and non-local closure model for the atmospheric boundary layer, part 1: model description and testing. J Appl Meteorol Climatol 46: 1383–1395

    Article  Google Scholar 

  44. Pleim JE (2007b) A combined local and non-local closure model for the atmospheric boundary layer, part 2: application and evaluation in a mesoscale meteorology model. J Appl Meteorol Climatol 46: 1396–1409

    Article  Google Scholar 

  45. Poulos GS et al (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83: 555–581

    Article  Google Scholar 

  46. Redelsperger J-L, Mahé F, Carlotti P (2001) A simple and general subgrid model suitable both for surface layer and free-stream turbulence. Boundary-Layer Meteorol 101: 375–408

    Article  Google Scholar 

  47. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note TN-475

  48. Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J Atmos Sci 63: 920–935

    Article  Google Scholar 

  49. Steeneveld GJ, Mauritsen T, de Bruijn EIF, de Arellano JV-G, Svensson G, Holtslag AAM (2008) Evaluation of limited area models for the representation of the diurnal cycle and contrasting nights in CASES99. J Appl Meteorol Climatol 47: 869–887

    Article  Google Scholar 

  50. Stull R (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  51. Svensson G, Holtslag AAM (2009) Modelling the turning of wind with height in the stable boundary layer. Boundary-Layer Meteorol 132: 261–277

    Article  Google Scholar 

  52. Teixeira J, Stevens B, Bretherton CS, Cederwall R, Doyle JD, Golaz JC, Holtslag AAM, Klein SA, Lundquist JK, Randall DA, Siebesma AP, Soares PMM (2008) Parameterization of the atmospheric boundary layer: a view from just above the inversion. Bull Am Meteorol Soc 89: 453–458

    Article  Google Scholar 

  53. Tjernström M, Žagar M, Svensson G, Cassano J, Pfeifer S, Rinke A, Wyser K, Dethloff K, Jones C, Semmler T (2005) Modeling the Arctic boundary layer: an evaluation of six ARCMIP regional-scale models with data from the SHEBA project. Boundary-Layer Meteorol 117: 337–381

    Article  Google Scholar 

  54. Tomas S, Masson V (2006) A parameterization of third order moments for the convective boundary layer. Boundary-Layer Meteorol 120: 437–454

    Article  Google Scholar 

  55. Tompkins AM, Bechtold P, Beljaars ACM, Benedetti A, Cheinet S, Janisková M, Köhler M, Lopez P, Morcrette J-J (2004) Moist physical processes in the IFS: progress and plans. ECMWF Technical Memorandum Nr 452

  56. Undén P, Rontu L, Järvinen H, Lynch P, Calvo J et al (2002) The HIRLAM-5 scientific documentation. http://hirlam.org

  57. Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Technol 20: 660–672

    Article  Google Scholar 

  58. Weng W, Taylor PA (2006) Modelling the 1D stable boundary layer with an E-l turbulence closure scheme. Boundary-Layer Meteorol 118: 305–323

    Article  Google Scholar 

  59. Xue M, Drogemeier KK, Wong V (2000) The advanced regional prediction system (ARPS)—a multi-scale non-hydrostatic atmospheric simulation and prediction model, part I: model dynamics and verification. Meteorol Atmos Phys 75: 161–193

    Article  Google Scholar 

  60. Zampieri M, Malguzzi P, Buzzi A (2005) Sensitivity of quantitative precipitation forecasts to boundary layer parameterization: a flash flood case study in the Western Mediterranean. Nat Hazards Earth Syst Sci 5: 603–612

    Article  Google Scholar 

  61. Zhang D-L, Zheng W-Z (2004) Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J Appl Meteorol 43: 157–169

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Svensson.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Svensson, G., Holtslag, A.A.M., Kumar, V. et al. Evaluation of the Diurnal Cycle in the Atmospheric Boundary Layer Over Land as Represented by a Variety of Single-Column Models: The Second GABLS Experiment. Boundary-Layer Meteorol 140, 177–206 (2011). https://doi.org/10.1007/s10546-011-9611-7

Download citation

Keywords

  • Diurnal cycle
  • GABLS
  • Model intercomparison
  • Single-column models
  • Turbulence parametrizations