Boundary-Layer Meteorology

, Volume 140, Issue 2, pp 263–294 | Cite as

Evaluation of Statistical Distributions for the Parametrization of Subgrid Boundary-Layer Clouds

  • Emilie Perraud
  • Fleur Couvreux
  • Sylvie Malardel
  • Christine Lac
  • Valéry Masson
  • Odile Thouron


In numerical weather prediction and climate models, planetary boundary-layer (PBL) clouds are linked to subgrid-scale processes such as shallow convection. A comprehensive statistical analysis of large-eddy simulations (LES), obtained for warm PBL cloud cases, is carried out in order to characterize the distributions of the horizontal subgrid cloud variability. The production of subgrid clouds is mainly associated with the variability of the total water content. Nevertheless, in the case of PBL clouds, the temperature variability cannot be completely discarded and the saturation deficit, which summarizes both temperature and total water fluctuations, provides a better representation of the cloud variability than the total water content. The probability density functions (PDFs) of LES saturation deficit generally have the shape of a main asymmetric bell-shaped curve with a more or less distinct secondary maximum specific to each type of PBL clouds. Unimodal theoretical PDFs, even those with a flexible skewness, are not sufficient to correctly fit the LES distributions, especially the long tail that appears for cumulus clouds. They do not provide a unified approach for all cloud types. The cloud fraction and the mean cloud water content, diagnosed from these unimodal PDFs, are largely underestimated. The use of a double Gaussian distribution allows correction of these errors on cloud fields and provides a better estimation of the cloud-base and cloud-top heights. Eventually, insights for the design of a subgrid statistical cloud scheme are provided, in particular a new formulation for the weight of the two Gaussian distributions and for the standard deviation of the convective distribution.


Double Gaussian distribution Large-eddy simulations Planetary boundary-layer clouds Probability density function Saturation deficit Statistical cloud scheme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bechtold P, Cuijpers JWM, Mascart P, Trouilhet P (1995) Modeling of trade wind cumuli with a low-order turbulence model: toward a unified description of Cu and Sc clouds in meteorological models. J Atmos Sci 52: 455–463CrossRefGoogle Scholar
  2. Bony S, Emanuel KA (2001) A parametrization of the cloudiness associated with cumulus convection; evaluation using Toga Coare data. J Atmos Sci 58: 3158–3183CrossRefGoogle Scholar
  3. Bougeault P (1981) Modeling the trade-wind cumulus boundary layer. Part 1: testing the ensemble cloud relations against numerical data. J Atmos Sci 38: 2414–2428CrossRefGoogle Scholar
  4. Bougeault P (1982) Cloud-ensemble relations based on the gamma probability distribution for the higher-order models of the planetary boundary layer. J Atmos Sci 39: 2691–2700CrossRefGoogle Scholar
  5. Brown AR, Cederwall RT, Chlond A, Duynkerke PG, Golaz JC, Khairoutdinov M, Lewellen DC, Lock AP, Macvean MK, Moeng CH, Neggers RAJ, Siebesma AP, Stevens B (2002) Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q J Roy Meteorol Soc 128: 1075–1093CrossRefGoogle Scholar
  6. Chaboureau JP, Bechtold P (2002) A simple cloud parameterization derived from cloud resolving model data: diagnostic and prognostic applications. J Atmos Sci 59: 2362–2372CrossRefGoogle Scholar
  7. Chaboureau JP, Bechtold P (2005) Statistical representation of clouds in a regional model and the impact on the diurnal cycle of convection during tropical convection, cirrus and nitrogen oxides (troccinox). J Geophys Res 110: D17103CrossRefGoogle Scholar
  8. Chosson F, Brenguier JL, Schuller L (2007) Entrainment-mixing and radiative transfer simulation in boundary layer clouds. J Atmos Sci 64: 2670–2682CrossRefGoogle Scholar
  9. Couvreux F, Hourdin F, Rio C (2010) Resolved versus parametrized boundary-layer plumes. part i: A parametrization-oriented conditional sampling in large-eddy simulations. Boundary-Layer Meterol 134: 441–458CrossRefGoogle Scholar
  10. Cuijpers JWM, Bechtold P (1995) A simple parameterization of cloud water related variables for use in boundary layer models. J Atmos Sci (Notes and correspondence) 52: 2486–2490CrossRefGoogle Scholar
  11. Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J Roy Meteorol Soc 126: 1–30CrossRefGoogle Scholar
  12. Dempster A, Laird N, Rubin D (1997) Maximum likelihood from incomplete data via the em algorithm. J Roy Stat Soc Ser B 39: 1–38Google Scholar
  13. Golaz JC, Larson VE, Cotton W (2002a) A PDF-based model for boundary layer clouds. Part I: method and model description. J Atmos Sci 59: 3540–3551CrossRefGoogle Scholar
  14. Golaz JC, Larson VE, Cotton W (2002b) A PDF-based model for boundary layer clouds. Part II: model results. J Atmos Sci 59: 3552–3571CrossRefGoogle Scholar
  15. Hogg RV, Craig AI (2005) Introduction to mathematical statistics. Pearson Education, Upper Saddle RiverGoogle Scholar
  16. Holland JZ, Rasmusson EM (1973) Measurement of atmospheric mass, energy and momentum budgets over a 500-kilometer square of tropical ocean. Mon Weather Rev 101: 44–55CrossRefGoogle Scholar
  17. Jam A, Hourdin F, Rio C, Couvreux F (2010) Vers un modele de nuage pour la representation des cumulus. In: Preprints of Ateliers de Modelisation de l’Atmosphere, Annual meeting, Meteo-France, ToulouseGoogle Scholar
  18. Lafore JP, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Héreil P, Mascart P, Masson V, Pinty JP, Redelsperger JL, Richard E, Vilà-Guerau de Arellano J (1998) The meso-NH atmospheric simulation system. Part 1: adiabatic formulation and control simulations. Ann Geophys 16: 90–109CrossRefGoogle Scholar
  19. Lappen CL (1999) The unification of mass flux and higher-order closure in the simulation of boundary layer turbulence. PhD thesis, Colorado State UniversityGoogle Scholar
  20. Larson VE, Wood R, Field PR, Golaz JC, Vonder Haar TH, Cotton WR (2001) Small-scale and mesoscale variability of scalars in cloudy boundary layers: one-dimensional probability density functions. J Atmos Sci 58: 1978–1994CrossRefGoogle Scholar
  21. Larson VE, Golaz JC, Cotton WR (2002) Small-scale and mesoscale variability in cloudy boundary layers: Joint probability density functions. J Atmos Sci 59: 3519–3539CrossRefGoogle Scholar
  22. Lenderink G, Siebesma P (2000) Combining the mass-flux approach with a statistical cloud scheme. Proceedings of the 14th symposium on Boundary Layers and Turbulence. Aspen, Co, USA, pp 66–69Google Scholar
  23. Lewellen WS, Yoh S (1993) Binormal model of ensemble partial cloudiness. J Atmos Sci 50: 1228–1237CrossRefGoogle Scholar
  24. McLachlan G, Krishnan T (1997) The EM algorithm and extensions. Wiley series in probability and statistics. Wiley, New York, p 274 ppGoogle Scholar
  25. Mellor GL (1977) The gaussian cloud model relations. J Atmos Sci 34: 356–358CrossRefGoogle Scholar
  26. Neggers RAJ (2009) A dual mass flux framework for boundary layer convection. Part II: clouds. J Atmos Sci 66: 1489–1506CrossRefGoogle Scholar
  27. Pergaud J, Masson V, Malardel S, Couvreux F (2009) A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Boundary-Layer Meteorol 132: 83–106CrossRefGoogle Scholar
  28. Raes F, Bates T, McGovern F, Van Liedekerke M (2000) The 2nd aerosol characterization experiment (ACE2): general overview and main results. Tellus 52B: 111–125Google Scholar
  29. Siebesma AP, Bretherton CS, Brown A, Chlond A, Cuxart J, Duynkerke PG, Jiang H, Khairoutdinov M, Lewellen D, Moeng CH, Sanchez E, Stevens B, Stevens DE (2003) A large eddy simulation intercomparison study of shallow cumulus convection. J Atmos Sci 60: 1201–1219CrossRefGoogle Scholar
  30. Smith RNB (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Q J Roy Meteorol Soc 116: 435–460CrossRefGoogle Scholar
  31. Sommeria G, Deardorff JW (1977) Subgrid-scale condensation in models of nonprecipitating clouds. J Atmos Sci 34: 344–355CrossRefGoogle Scholar
  32. Stephens G, Vane D, Boain R, Mace G, Sassen K,Wang Z, Illingworth A, O’Connor E, RossowW, Durden S, Miller S, Austin R, Benedetti A, Mitrescu C, The CloudSat Science Team (2002) The cloudsat mission and the A-train: a new dimension of space-based observations of clouds and precipitation. Bull Am Meteorol Soc 83:1771–1790CrossRefGoogle Scholar
  33. Tompkins AM (2002) A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J Atmos Sci 59: 1917–1942CrossRefGoogle Scholar
  34. Tompkins AM (2003) Impact of temperature and humidity variability on cloud cover assessed using aircraft data. Q J Roy Meteorol Soc 129: 2151–2170CrossRefGoogle Scholar
  35. van Zanten MC, Stevens B, Nuijens L, Siebesma AP, Ackerman AS, Burnet F, Cheng A, Couvreux F, Jiang H, Khairoutdinov M, Kogan Y, Lewellen C, Mechem D, Nakamura K, Noda A, Shipway BJ, Slawinska J, Wang S, Wyszogrodzki A (2011) Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J Adv Model Earth Syst 3 (in press)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Emilie Perraud
    • 1
  • Fleur Couvreux
    • 1
  • Sylvie Malardel
    • 1
  • Christine Lac
    • 1
  • Valéry Masson
    • 1
  • Odile Thouron
    • 2
  1. 1.CNRM-GAME, Météo-France and CNRSToulouse Cedex 1France
  2. 2.CERFACSToulouse Cedex 1France

Personalised recommendations