Advertisement

Boundary-Layer Meteorology

, Volume 139, Issue 3, pp 521–541 | Cite as

The Growth of the Planetary Boundary Layer at a Coastal Site: a Case Study

  • Ferdinando De Tomasi
  • M. Marcello Miglietta
  • M. Rita Perrone
Article

Abstract

A lidar system is used to determine the diurnal evolution of the planetary boundary layer (PBL) height on a summer day characterized by anticyclonic conditions. The site is located some 15 km distant from the sea, on a peninsula in south-east Italy. Contrary to expectations, the PBL height, after an initial growth consequent to sunrise, ceases to increase about 2 h before noon and then decreases and stabilizes in the afternoon. An interpretation of such anomalous behaviour is provided in terms of trajectories of air parcels towards the lidar site, which are influenced by the sea breeze, leading to a transition from a continental boundary layer to a coastal internal boundary layer. The results are analyzed using mesoscale numerical model simulations and a simple model that allows for a more direct interpretation of experimental results.

Keywords

Aerosol Lidar Planetary boundary-layer modelling Sea breeze 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbs DJ, Physick WL (1992) Sea-breeze observations and modelling: a review. Aust Meteorol Mag 41: 7–19Google Scholar
  2. Baars H, Ansmann A, Engelmann R, Althausen D (2008) Continuous monitoring of the boundary-layer top with lidar. Atmos Chem Phys 8: 7281–7296CrossRefGoogle Scholar
  3. Batchvarova E, Gryning SE (1991) Applied model for the growth of the daytime mixed layer. Boundary-Layer Meteorol 56: 261–274CrossRefGoogle Scholar
  4. Batchvarova E, Gryning SE (1998) Wind climatology, atmospheric turbulence and internal boundary-layer development in Athens during the MEDCAPHOT-TRACE experiment. Atmos Environ 32: 2055–2069CrossRefGoogle Scholar
  5. Batchvarova E, Cai X, Gryning SE, Steyn D (1999) Modelling internal boundary layer development in a region with a complex coastline. Boundary-Layer Meteorol 90: 1–20CrossRefGoogle Scholar
  6. Beljaars ACM, Betts AK (1993) Validation of the boundary layer representation in the ECMWF model. In: Validation of the models over Europe, ECMWF seminar proceedings vol 2. Reading, UK, pp 159–195Google Scholar
  7. Berge E, Jakobsen HA (1998) A regional scale multi-layer model for the calculation of long-term transport and deposition of air pollution in Europe. Tellus 50: 205–223CrossRefGoogle Scholar
  8. Boselli A, Armenante M, D’Avino L, D’Isidoro M, Pisani G, Spinelli N, Wang X (2009) Atmospheric aerosol characterization over Naples during 2000–2003 EARLINET project: planetary boundary-layer evolution and layering. Boundary-Layer Meteorol 132: 151–165CrossRefGoogle Scholar
  9. Bravo M, Mira T, Soler MR, Cuxart J (2008) Intercomparison and evaluation of MM5 and Meso-NH mesoscale models in the stable boundary layer. Boundary-Layer Meteorol 128: 77–101CrossRefGoogle Scholar
  10. Carson DJ (1973) The development of a dry inversion-capped convectively unstable boundary layer. Q J Roy Meteorol Soc 99: 450–467CrossRefGoogle Scholar
  11. Case JL, Manobianco J, Dianic AV, Wheeler MM, Harms DE, Parks CR (2002) Verification of high-resolution rams forecasts over east-central florida during the 1999 and 2000 summer months. Weather Forecast 17: 1133–1151CrossRefGoogle Scholar
  12. Chen F, Dudhia J (2001) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. part I: Model description and implementation. Mon Weather Rev 129: 569–585CrossRefGoogle Scholar
  13. Colby FP Jr (2004) Simulations of the New England sea breeze: the effect of grid spacing. Weather Forecasting 19: 277–285CrossRefGoogle Scholar
  14. Courant R, Hilbert D (1962) Methods of Mathematical Physics, vol II. Interscience, New York, p 830Google Scholar
  15. Dayan U, Heffter J, Miller J (1996) Seasonal distribution of the boundary layer depths over the Mediterranean basin. In: Guerzoni S, Chester R (eds) The impact of desert dust across the Mediterranean. Kluwer, Dordrecht, pp 103–112Google Scholar
  16. De Tomasi F, Perrone MR (2003) Lidar measurement of tropospheric water vapor and aerosols profiles over southern Italy. J Geophys Res 108. doi: 10.1029/2002JD002781
  17. De Tomasi F, Perrone MR (2006) PBL and dust layer seasonal evolution by lidar and radiosounding measurements over a peninsular site. Atmos Res 80: 86–103CrossRefGoogle Scholar
  18. Delbarre H, Augustin P, Saïd F, Campistron B, Benech B, Lohou F, Puygrenier V, Moppert C, Cousin F, Freville P, Frejafon E (2005) Ground-based remote sensing observation of the complex behaviour of the Marseille boundary layer during ESCOMPTE. Atmos Res 74: 403–433CrossRefGoogle Scholar
  19. Flamant C, Pelon J, Flamant P, Durand P (1997) Lidar determination of the entrainment zone thickness at the top of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Boundary-Layer Meteorol 83: 247–284CrossRefGoogle Scholar
  20. Garratt JR (1990) The internal boundary layer: a review. Boundary-Layer Meteorol 50: 171–203CrossRefGoogle Scholar
  21. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, UK, p 316Google Scholar
  22. Gryning SE, Batchvarova E (1990) Analytical model for the growth of the coastal internal boundary layer during onshore flows. Q J Roy Meteorol Soc 116: 187–203CrossRefGoogle Scholar
  23. Gryning SE, Batchvarova E (1996) A model for the height of the internal boundary layer over an area with irregular coastline. Boundary-Layer Meteorol 78: 405–413CrossRefGoogle Scholar
  24. Gryning SE, Batchvarova E (2003) Marine atmospheric boundary-layer height estimated from nwp model output. Int J Environ Pollut 20: 147–153Google Scholar
  25. Haeffelin M, Morille Y, Görsdorf U, Teschke G, Beyrich F (2009) Retrieval of mixing layer depth from existing ceilometer/lidar networks in Europe. In: 8th international symposium on Tropospheric profiling: integration of needs, technologies and applications, 19–23 October 2009, Delft, The Netherlands, paper S10-002Google Scholar
  26. Hanna SR, Burkhart CL, Paine RJ (1985) Mixing height uncertainties. In: Proceedings of 7th AMS symposium on Turbulence and diffusion, pp 82–85Google Scholar
  27. Janjic ZI (1990) The step-mountain coordinate: physical package. Mon Weather Rev 118: 1429–1443CrossRefGoogle Scholar
  28. Janjic ZI (1996) The surface layer in the NCEP Eta Model. In: 11th conference on Numerical weather prediction, 19–23 August, Norfolk, VA, pp 354–355Google Scholar
  29. Janjic ZI (2002) Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. Technical Report, NCEP, 437, 61 ppGoogle Scholar
  30. Klemp JB, Skamarock WC, Dudhia J (2007) Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon Weather Rev 135: 2897–2913CrossRefGoogle Scholar
  31. Lammert A, Bösenberg J (2006) Determination of the convective boundary-layer height with laser remote sensing. Boundary-Layer Meteorol 119: 159–170CrossRefGoogle Scholar
  32. Lemonsu A, Bastin S, Masson V, Drobinski P (2006) Vertical structure of the urban boundary layer over Marseille under sea-breeze conditions. Boundary-Layer Meteorol 118: 477–501CrossRefGoogle Scholar
  33. Luhar A (1998) An analytical slab model for the growth of the coastal thermal internal boundary layer under near neutral on shore flow conditions. Boundary-Layer Meteorol 89: 385–405CrossRefGoogle Scholar
  34. Luhar AK, Sawford BL, Hacker JM, Rayner KN (1998) The Kwinana Coastal Fumigation Study: II—growth of the thermal internal boundary layer. Boundary-Layer Meteorol 88: 103–120CrossRefGoogle Scholar
  35. Mangia C, Martano P, Miglietta MM, Morabito A, Tanzarella A (2004) Modeling local winds over the Salento peninsula. Meteorol Appl 11: 231–244CrossRefGoogle Scholar
  36. Martano P (2002) An algorithm for the calculation of the time dependent mixing height in coastal site. J Appl Meteorol 41: 351–354CrossRefGoogle Scholar
  37. Maryon RH, Best MJ (1992) ‘NAME’, ‘ATMES’ and the boundary layer problem. Turbulence and Diffusion Note. Technical Report 204, UK Meteorological OfficeGoogle Scholar
  38. Mastrantonio G, Viola AP, Argentini S, Fiocco G, Giannini L, Rossini L, Abbate G, Ocone R, Casonato M (1994) Observations of sea breeze events in Rome and the surrounding area by a network of Doppler sodars. Boundary-Layer Meteorol 71: 67–80CrossRefGoogle Scholar
  39. Matthias V, Balis D, Bösenberg J, Eixmann R, Iarlori M, Komguem L, Mattis I, Papayannis A, Pappalardo G, Perrone MR, Wang X (2004) Vertical aerosol distribution over europe: statistical analysis of raman lidar data from 10 european aerosol research lidar network (EARLINET) stations. J Geophys Res 109: D18201CrossRefGoogle Scholar
  40. McCormick P (2005) Airborne and spaceborne lidar. In: Weitkamp CE Lidar Range-resolved optical remote sensing of the atmosphere. Springer series in Optical sciences, vol 102, chap 13. Springer Science, Heidelberg, UK, pp 355–397Google Scholar
  41. McElroy JL, Smith TB (1991) Lidar descriptions of mixing-layer thickness characteristics in a complex terrain/coastal environment. J Appl Meteorol 30: 585–597CrossRefGoogle Scholar
  42. McQueen JT, Tassone C, Tsidulko M, Zhu Y, Cucurull L, Liu S, Manikin G, DiMego G (2010) An overview of the NOAA/NWS/NCEP real-time mesoscale analysis (RTMA) system with extensions for the atmospheric boundary layer. In: 16th conference on Air pollution meteorology, 17–21 January 2010, Atlanta, GA, paper 7.6Google Scholar
  43. Melas D, Kambezidis HD (1992) The depth of the internal boundary layer over an urban area under sea-breeze condition. Boundary-Layer Meteorol 61: 247–264CrossRefGoogle Scholar
  44. Melas D, Ziomas I, Zerefos C (1995) Boundary layer dynamics in an urban coastal environment under sea-breeze conditions. Atmos Environ 29: 3605–3617CrossRefGoogle Scholar
  45. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20: 851–875CrossRefGoogle Scholar
  46. Michalakes J, Dudhia J, Gill D, Henderson T, Klemp J, Skamarock W, Wang W (2005) The weather research and forecast model: software architecture and performance. In: Zwieflhofer W, Mozdzynski G (eds) 11th ECMWF Workshop on the Use of high performance computing in meteorology. World Scientific, River Edge, pp 156–168CrossRefGoogle Scholar
  47. Miller STK, D KB, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys 41(3): 1011CrossRefGoogle Scholar
  48. Murayama T, Okamoto H, Kaneyasu N, Kamataki H, Miura K (1999) Application of lidar depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles. J Geophys Res 104: 31,781–31,792CrossRefGoogle Scholar
  49. Puygrenier V, Lohou F, Campistron F, Said F, Pigeon G, Benech B, Serça D (2005) Investigation on the fine structure of sea-breeze during ESCOMPTE experiment. Atmos Res 74: 329–353CrossRefGoogle Scholar
  50. Santacesaria V, Marenco F, Balis D, Papayannis A, Zerefos C (1998) Lidar observations of the planetary boundary layer above the city of Thessaloniki, Greece. Nuovo Cimento C 21(6): 585–595Google Scholar
  51. Sassen K (2005) Polarization in lidar. In: Weitkamp CE Lidar: range-resolved optical remote sensing of the atmosphere. Springer Series in Optical sciences, vol 102, chap 2. Springer Science, Heidelberg, UK, pp 19–42Google Scholar
  52. Seibert P, Beyrich F, Gryining SE, Joggre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34: 1001–1027CrossRefGoogle Scholar
  53. Sicard M, Perez C, Rocadenbosch F, Baldasano JM, Garcia-Vizcaino D (2006) Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: methods, results and limitations. Boundary-Layer Meteorol 119: 135–157CrossRefGoogle Scholar
  54. Simpson JE (1994) Sea breeze and local winds. Cambridge University Press, Cambridge, p 234Google Scholar
  55. Steyn DG, Oke TR (1982) The depth of the daytime mixed layer at two coastal sites: a model and its validation. Boundary-Layer Meteorol 24: 161–180CrossRefGoogle Scholar
  56. Steyn DG, Bottenheim JW, Thomson RB (1997) Overview of tropospheric ozone in the Lower Fraser Valley, and the Pacific ’93 field study. Atmos Environ 31(14): 2025–2035CrossRefGoogle Scholar
  57. Stohl A (1998) Computation, accuracy and applications of trajectories: a review and bibliography. Atmos Environ 32: 947–966CrossRefGoogle Scholar
  58. Stull RB (1988) Introduction to boundary layer meteorology. Kluwer, Dordrecht, p 670Google Scholar
  59. Szintai B, Kaufmann P, Rotach MW (2009) Deriving turbulence characteristics from the COSMO numerical weather prediction model for dispersion applications. Adv Sci Res 3: 79–84CrossRefGoogle Scholar
  60. Talbot C, Augustin P, Leroy C, Willart V, Delbarre H, Khomenco G (2007) Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea. Boundary-Layer Meteorol 125: 133–154CrossRefGoogle Scholar
  61. Tennekes H (1973) A model for the dynamics of the inversion above a convective boundary layer. J Atmos Sci 30: 558–567CrossRefGoogle Scholar
  62. Wandinger U (2005) Introduction to lidar. In: Weitkamp CE Lidar: range-resolved optical remote sensing of the atmosphere. Springer Series in Optical sciences, vol 102, chap 1. Springer Science, Heidelberg, UK, pp 1–18Google Scholar
  63. Wauben WMF, de Haij M, Baltink HK (2008) Towards a cloud ceilometer network reporting mixing layer height. In: TECO-2008—WMO technical conference on Meteorological and environmental instruments and methods of observation–St. Petersburg, Russian Federation, 27–29 November 2008, paper P1(5)Google Scholar
  64. Weisman M, Davis C, Wang W (2005) Explicit convective forecasting with the WRF model. In: WRF-MM5 workshop, June 30, Boulder, COGoogle Scholar
  65. Wotawa G, Stohl A, Kromb-Kohl H (1996) Parameterization of the planetary boundary layer over Europe: a data comparison between the observation-based OML preprocessor and ECMWF model data. Contrib Atmos Phys 69: 273–284Google Scholar
  66. Zhang Y, Chen YL, Schroeder TA, Kodama K (2005) Numerical simulations of sea-breeze circulations over northwest Hawaii. Weather Forecasting 20: 827–846CrossRefGoogle Scholar
  67. Zilitinkevich S (1975) Comments on: a model for the dynamics of the inversion above a convective boundary layer. J Atmos Sci 32: 991–992CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ferdinando De Tomasi
    • 1
  • M. Marcello Miglietta
    • 2
    • 3
  • M. Rita Perrone
    • 1
  1. 1.Dipartimento di FisicaUniversitá del SalentoLecceItaly
  2. 2.CNR-ISACLecceItaly
  3. 3.CNR-ISEVerbania PallanzaItaly

Personalised recommendations