Boundary-Layer Meteorology

, Volume 139, Issue 2, pp 307–332 | Cite as

Critical Evaluation of Scalar Roughness Length Parametrizations Over a Melting Valley Glacier

  • Xiaofeng Guo
  • Kun Yang
  • Long Zhao
  • Wei Yang
  • Shenghai Li
  • Meilin Zhu
  • Tandong Yao
  • Yingying Chen


We present a field investigation over a melting valley glacier on the Tibetan Plateau. In the ablation zone, aerodynamic roughness lengths (z 0M ) vary on the order of 10−4–10−2 m, whose evolution corresponds to three melt phases with distinct surface cover and moisture exchange: snow (sublimation/evaporation), bare ice (deposition/condensation), and ice hummocks (sublimation/evaporation). Bowen-ratio similarity is validated in the stably stratified katabatic winds, which suggests a useful means for data quality check. A roughness sublayer is regarded as irrelevant to the present ablation season, because selected characteristics of scalar turbulence over smooth snow are quite similar to those over hummocky ice. We evaluate three parametrizations of the scalar roughness lengths (z 0T for temperature and z 0q for humidity), viz. key factors for the accurate estimation of sensible heat and latent heat fluxes using the bulk aerodynamic method. The first approach is based on surface-renewal models and has been widely applied in glaciated areas; the second has never received application over an ice/snow surface, despite its validity in (semi-)arid regions; the third, a derivative of the first, is proposed for use specifically over rough ice defined as z 0M > 10−3 m or so. This empirical z 0M threshold value is deemed of general relevance to glaciated areas (e.g. ice sheet/cap and valley/outlet glaciers), above which the first approach gives notably underestimated z 0T,q . The first and the third approaches tend to underestimate and overestimate turbulent heat/moisture exchange, respectively, frequently leading to relative errors higher than 30%. Comparatively, the second approach produces fairly low errors in energy flux estimates both in individual melt phases and over the whole ablation season; it thus emerges as a practically useful choice to parametrize z 0T,q in glaciated areas. Moreover, we find all three candidate parametrizations unable to predict diurnal variations in the excess resistances to humidity transfer, thus encouraging more efforts for improvement.


Bowen-ratio similarity Bulk aerodynamic method Eddy-covariance method Katabatic wind Scalar roughness length Stable boundary layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson PS, Neff WD (2008) Boundary layer physics over snow and ice. Atmos Chem Phys 8: 3563–3582CrossRefGoogle Scholar
  2. Andreas EL (1987) A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorol 38: 159–184CrossRefGoogle Scholar
  3. Andreas EL (2002) Parameterizing scalar transfer over snow and ice: a review. J Hydrometeorol 3: 417–432CrossRefGoogle Scholar
  4. Andreas EL, Persson POG, Jordan RE, Horst TW, Guest PS, Grachev AA, Fairall CW (2004) Roughness lengths over snow. In: Proceedings of 84th AMS annual meeting, paper JP4.31, Seattle, WA, USA, 8 ppGoogle Scholar
  5. Andreas EL, Jordan RE, Makshtas AP (2005a) Parameterizing turbulent exchange over sea ice: the Ice Station Weddell results. Boundary-Layer Meteorol 114: 439–460CrossRefGoogle Scholar
  6. Andreas EL, Persson POG, Jordan RE, Horst TW, Guest PS, Grachev AA, Fairall CW (2005b) Parameterizing the turbulent surface fluxes over summer sea ice. In: Proceedings of 85th AMS annual meeting, paper J1.15, San Diego, CA, USA, 9 ppGoogle Scholar
  7. Andreas EL, Horst TW, Grachev AA, Persson POG, Fairall CW, Guest PS, Jordan RE (2010a) Parametrizing turbulent exchange over summer sea ice and the marginal ice zone. Q J Roy Meteorol Soc 136: 927–943CrossRefGoogle Scholar
  8. Andreas EL, Persson POG, Jordan RE, Horst TW, Guest PS, Grachev AA, Fairall CW (2010b) Parameterizing turbulent exchange over sea ice in winter. J Hydrometeorol 11: 87–104CrossRefGoogle Scholar
  9. Andreassen LM, van den Broeke MR, Giesen RH, Oerlemans J (2008) A 5 year record of surface energy and mass balance from the ablation zone of Storbreen, Norway. J Glaciol 54: 245–258CrossRefGoogle Scholar
  10. Basu S, Ruiz-Columbié A, Phillipson JA, Harshan S (2010) Local scaling characteristics of Antarctic surface layer turbulence. Cryosphere 4: 325–331CrossRefGoogle Scholar
  11. Bintanja R (1995) The local surface energy balance of the Ecology Glacier, King George Island, Antarctica: measurements and modelling. Antarct Sci 7: 315–325CrossRefGoogle Scholar
  12. Bintanja R, van den Broeke MR (1995) Momentum and scalar transfer coefficients over aerodynamically smooth Antarctic surfaces. Boundary-Layer Meteorol 74: 89–111CrossRefGoogle Scholar
  13. Brock BW, Willis IC, Sharp MJ (2006) Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland. J Glaciol 52: 281–297CrossRefGoogle Scholar
  14. Brunke MA, Zhou M, Zeng X, Andreas EL (2006) An intercomparison of bulk aerodynamic algorithms used over sea ice with data from the Surface Heat Budget for the Arctic Ocean (SHEBA) experiment. J Geophys Res 111: C09001. doi: 10.1029/2005JC002907 CrossRefGoogle Scholar
  15. Cassano JJ, Parish TR, King JC (2001) Evaluation of turbulent surface flux parameterizations for the stable surface layer over Halley, Antarctica. Mon Weather Rev 129: 26–46CrossRefGoogle Scholar
  16. Chen Y, Yang K, Zhou D, Qin J, Guo X (2010) Improving Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J Hydrometeorol 11: 995–1006CrossRefGoogle Scholar
  17. Chiba O, Kobayashi S (1986) A study of the structure of low-level katabatic winds at Mizuho Station, East Antarctica. Boundary-Layer Meteorol 37: 343–355CrossRefGoogle Scholar
  18. Clifton A, Manes C, J-D Rüedi, Guala M, Lehning M (2008) On shear-driven ventilation of snow. Boundary-Layer Meteorol 126: 249–261CrossRefGoogle Scholar
  19. Davidson PA (2004) Turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford, p 657Google Scholar
  20. Denby B, Greuell W (2000) The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds. J Glaciol 46: 445–452CrossRefGoogle Scholar
  21. Denby B, Snellen H (2002) A comparison of surface renewal theory with the observed roughness length for temperature on a melting glacier surface. Boundary-Layer Meteorol 103: 459–468CrossRefGoogle Scholar
  22. DeWalle DR, Rango A (2008) Principles of snow hydrology. Cambridge University Press, Cambridge, p 403CrossRefGoogle Scholar
  23. Foken T (2008) Micrometeorology. Springer, Heidelberg, p 308Google Scholar
  24. Foken T, Göckede M, Mauder M, Mahrt L, Amiro B, Munger W (2004) Post-field data quality control. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208Google Scholar
  25. Forrer J, Rotach MW (1997) On the turbulence structure in the stable boundary layer over the Greenland ice sheet. Boundary-Layer Meteorol 85: 111–136CrossRefGoogle Scholar
  26. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, p 316Google Scholar
  27. Giesen RH, van den Broeke MR, Oerlemans J, Andreassen LM (2008) Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: interannual variability and the effect of clouds. J Geophys Res 113: D21111. doi: 10.1029/2008JD010390 CrossRefGoogle Scholar
  28. Giesen RH, Andreassen LM, van den Broeke MR, Oerlemans J (2009) Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway. Cryosphere 3: 57–74CrossRefGoogle Scholar
  29. Greuell W, Genthon C (2004) Modelling land-ice surface mass balance. In: Bamber JL, Payne AJ (eds) Mass balance of the cryosphere: observations and modelling of contemporary and future changes. Cambridge University Press, Cambridge, pp 117–168CrossRefGoogle Scholar
  30. Haverd V, Böhm M, Raupach MR (2010) The effect of source distribution on bulk scalar transfer between a rough land surface and the atmosphere. Boundary-Layer Meteorol 135: 351–368CrossRefGoogle Scholar
  31. Heinemann G (2004) Local similarity properties of the continuously turbulent stable boundary layer over Greenland. Boundary-Layer Meteorol 112: 283–305CrossRefGoogle Scholar
  32. Heinemann G (2008) The polar regions: a natural laboratory for boundary layer meteorology—a review. Meteorol Z 17: 589–601CrossRefGoogle Scholar
  33. Hock R (2005) Glacier melt: a review of processes and their modelling. Prog Phys Geogr 29: 362–391CrossRefGoogle Scholar
  34. Holtslag AAM, de Bruin HAR (1988) Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 27: 689–704CrossRefGoogle Scholar
  35. Hudson SR, Brandt RE (2005) A look at the surface-based temperature inversion on the Antarctic plateau. J Clim 18: 1673–1696CrossRefGoogle Scholar
  36. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Cambridge University Press, Cambridge, p 289Google Scholar
  37. Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J Roy Meteorol Soc 98: 563–589CrossRefGoogle Scholar
  38. King JC (1990) Some measurements of turbulence over an Antarctic ice shelf. Q J Roy Meteorol Soc 116: 379–400CrossRefGoogle Scholar
  39. King JC, Argentini SA, Anderson PS (2006) Contrasts between the summertime surface energy balance and boundary layer structure at Dome C and Halley stations, Antarctica. J Geophys Res 111: D02105. doi: 10.1029/2005JD006130 CrossRefGoogle Scholar
  40. Klok EJ, Nolan M, van den Broeke MR (2005) Analysis of meteorological data and the surface energy balance of McCall Glacier, Alaska, USA. J Glaciol 51: 451–461CrossRefGoogle Scholar
  41. Konya K, Matsumoto T (2010) Influence of weather conditions and spatial variability on glacier surface melt in Chilean Patagonia. Theor Appl Climatol 102: 139–149CrossRefGoogle Scholar
  42. Lee X, Finnigan J, Paw U KT (2004) Coordinate systems and flux bias error. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 33–66Google Scholar
  43. Liebethal C, Foken T (2003) On the significance of the Webb correction to fluxes. Boundary-Layer Meteorol 109: 99–106CrossRefGoogle Scholar
  44. Liebethal C, Foken T (2004) On the significance of the Webb correction to fluxes: corrigendum. Boundary-Layer Meteorol 113: 301CrossRefGoogle Scholar
  45. Ma Y, Menenti M, Feddes R, Wang J (2008) Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths. J Geophys Res 113: D08113. doi: 10.1029/2007JD009124 CrossRefGoogle Scholar
  46. Mahrt L (2010) Computing turbulent fluxes near the surface: needed improvements. Agric For Meteorol 150: 501–509CrossRefGoogle Scholar
  47. Manes C, Guala M, Löwe H, Bartlett S, Egli L, Lehning M (2008) Statistical properties of fresh snow roughness. Water Resour Res 44: W11407. doi: 10.1029/2007WR006689 CrossRefGoogle Scholar
  48. Mauder M, Foken T (2006) Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorol Z 15: 597–609CrossRefGoogle Scholar
  49. McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol 43: 231–245CrossRefGoogle Scholar
  50. Meesters AGCA, Bink NJ, Vugts HF, Cannemeijer F, Henneken EAC (1997) Turbulence observations above a smooth melting surface on the Greenland ice sheet. Boundary-Layer Meteorol 85: 81–110CrossRefGoogle Scholar
  51. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37: 17–35CrossRefGoogle Scholar
  52. Munro DS (1989) Surface roughness and bulk heat transfer on a glacier: comparison with eddy correlation. J Glaciol 35: 343–348Google Scholar
  53. Munro DS (2006) Linking the weather to glacier hydrology and mass balance at Peyto glacier. In: Demuth MN, Munro DS, Young GT (eds) Peyto glacier: one century of science. National Hydrology Research Institute Science Report, vol 8, pp 135–178Google Scholar
  54. Munro DS, Davies JA (1977) An experimental study of the glacier boundary layer over melting ice. J Glaciol 18: 425–436Google Scholar
  55. Munro DS, Davies JA (1978) On fitting the log-linear model to wind speed and temperature profiles over a melting glacier. Boundary-Layer Meteorol 15: 423–437CrossRefGoogle Scholar
  56. Oerlemans J (1998) The atmospheric boundary layer over melting glaciers. In: Holtslag AAM, Duynkerke PG (eds) Clear and cloudy boundary layers. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 129–153Google Scholar
  57. Oerlemans J (2000) Analysis of a 3 year meteorological record from the ablation zone of Morteratschgletscher, Switzerland: energy and mass balance. J Glaciol 46: 571–579CrossRefGoogle Scholar
  58. Oerlemans J (2001) Glaciers and climate change. A.A. Balkema Publishers, Rotterdam, p 148Google Scholar
  59. Oerlemans J (2010) The microclimate of valley glaciers. Utrecht Publishing & Archiving Services (Utrecht University), Igitur, 138 ppGoogle Scholar
  60. Oerlemans J, Grisogono B (2002) Glacier winds and parameterisation of the related surface heat fluxes. Tellus A 54: 440–452CrossRefGoogle Scholar
  61. Oerlemans J, Klok EJ (2002) Energy balance of a glacier surface: analysis of automatic weather station data from the Morteratschgletscher, Switzerland. Arct Antarct Alp Res 34: 477–485CrossRefGoogle Scholar
  62. Oerlemans J, Björnsson H, Kuhn M, Obleitner F, Palsson F, Smeets CJPP, Vugts HF, De Wolde J (1999) Glacio-meteorological investigations on Vatnajökull, Iceland, summer 1996: an overview. Boundary-Layer Meteorol 92: 3–26CrossRefGoogle Scholar
  63. Parish TR, Cassano JJ (2003) The role of katabatic winds on the Antarctic surface wind regime. Mon Weather Rev 131: 317–333CrossRefGoogle Scholar
  64. Parmhed O, Oerlemans J, Grisogono B (2004) Describing surface fluxes in katabatic flow on Breidame- rkurjökull, Iceland. Q J Roy Meteorol Soc 130: 1137–1151CrossRefGoogle Scholar
  65. Pasricha PK, Singh R, Sarkar SK, Dutta HN, Reddy BM, Das PK (1991) Characteristics of atmospheric turbulence in the surface layer over Antarctica. Boundary-Layer Meteorol 57: 207–217CrossRefGoogle Scholar
  66. Roth M, Oke TR (1995) Relative efficiencies of turbulent transfer of heat, mass, and momentum over a patchy urban surface. J Atmos Sci 52: 1863–1874CrossRefGoogle Scholar
  67. Schotanus P, Nieuwstadt FTM, De Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Boundary-Layer Meteorol 26: 81–93CrossRefGoogle Scholar
  68. Singh P, Singh VP (2001) Snow and glacier hydrology. Kluwer, Dordrecht, p 742Google Scholar
  69. Smeets CJPP, Duynkerke PG, Vugts HF (1998) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part I: A combination of katabatic and large-scale forcing. Boundary-Layer Meteorol 87: 117–145CrossRefGoogle Scholar
  70. Smeets CJPP, Duynkerke PG, Vugts HF (1999) Observed wind profiles and turbulence fluxes over an ice surface with changing surface roughness. Boundary-Layer Meteorol 92: 101–123CrossRefGoogle Scholar
  71. Smeets CJPP, Duynkerke PG, Vugts HF (2000) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part II: Pure katabatic forcing conditions. Boundary-Layer Meteorol 97: 73–107CrossRefGoogle Scholar
  72. Smeets CJPP, van den Broeke MR (2008a) Temporal and spatial variations of the aerodynamic roughness length in the ablation zone of the Greenland ice sheet. Boundary-Layer Meteorol 128: 315–338CrossRefGoogle Scholar
  73. Smeets CJPP, van den Broeke MR (2008b) The parameterisation of scalar transfer over rough ice. Boundary-Layer Meteorol 128: 339–355CrossRefGoogle Scholar
  74. Stössel F, Guala M, Fierz C, Manes C, Lehning M (2010) Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover. Water Resour Res 46: W04511. doi: 10.1029/2009WR008198 CrossRefGoogle Scholar
  75. Stull R (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, p 297Google Scholar
  76. Su Z, Schmugge T, Kustas WP, Massman WJ (2001) An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J Appl Meteorol 40: 1933–1951CrossRefGoogle Scholar
  77. Sun J (1999) Diurnal variations of thermal roughness height over a grassland. Boundary-Layer Meteorol 92: 407–427CrossRefGoogle Scholar
  78. Townsend AA (1976) The structure of turbulent shear flow. Cambridge University Press, Cambridge, p 429Google Scholar
  79. Tsonis AA (2002) An introduction to atmospheric thermodynamics. Cambridge University Press, Cambridge, p 182Google Scholar
  80. van den Broeke MR (1997a) Momentum, heat, and moisture budgets of the katabatic wind layer over a midlatitude glacier in summer. J Appl Meteorol 36: 763–774CrossRefGoogle Scholar
  81. van den Broeke MR (1997b) Structure and diurnal variation of the atmospheric boundary layer over a mid-latitude glacier in summer. Boundary-Layer Meteorol 83: 183–205CrossRefGoogle Scholar
  82. van den Broeke M, Reijmer C, van As D, Boot W (2006) Daily cycle of the surface energy balance in Antarctica and the influence of clouds. Int J Climatol 26: 1587–1605CrossRefGoogle Scholar
  83. van den Broeke M, Smeets P, Ettema J, van der Veen C, van de Wal R, Oerlemans J (2008) Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet. Cryosphere 2: 179–189CrossRefGoogle Scholar
  84. van den Broeke M, Smeets P, Ettema J (2009) Surface layer climate and turbulent exchange in the ablation zone of the west Greenland ice sheet. Int J Climatol 29: 2309–2323CrossRefGoogle Scholar
  85. van der Avoird E, Duynkerke PG (1999) Turbulence in a katabatic flow: does it resemble turbulence in stable boundary layers over flat surfaces. Boundary-Layer Meteorol 92: 39–66Google Scholar
  86. Verhoef A, De Bruin HAR, van den Hurk BJJM (1997) Some practical notes on the parameter kB −1 for sparse vegetation. J Appl Meteorol 36: 560–572CrossRefGoogle Scholar
  87. Vihma T, Launiainen J, Pirazzini R (2009) 20 Years of Finnish research on boundary-layer meteorology and air–ice–sea interaction in the Antarctic. Geophysica 45: 7–26Google Scholar
  88. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J Roy Meteorol Soc 106: 85–100CrossRefGoogle Scholar
  89. Weber M (2007) A parameterization for the turbulent fluxes over melting surfaces derived from eddy correlation measurements. In: Proceedings of Alpine-snow-workshop, Nationalpark Berchtesgaden, Munich, Germany, pp 138–149Google Scholar
  90. Xu B-Q, Wang M, Joswiak DR, Cao J-J, Yao T-D, Wu G-J, Yang W, Zhao H-B (2009) Deposition of anthropogenic aerosols in a southeastern Tibetan glacier. J Geophys Res 114: D17209. doi: 10.1029/2008JD011510 CrossRefGoogle Scholar
  91. Yang K, Koike T, Fujii H, Tamagawa K, Hirose N (2002) Improvement of surface flux parameterizations with a turbulence-related length. Q J Roy Meteorol Soc 128: 2073–2087CrossRefGoogle Scholar
  92. Yang K, Koike T, Yang D (2003) Surface flux parameterization in the Tibetan Plateau. Boundary-Layer Meteorol 106: 245–262CrossRefGoogle Scholar
  93. Yang K, Koike T, Ishikawa H, Kim J, Li X, Wang J, Liu H, Liu S, Ma Y (2008) Turbulent flux transfer over bare-soil surfaces: characteristics and parameterization. J Appl Meteorol Climatol 47: 276–290CrossRefGoogle Scholar
  94. Yang K, Qin J, Guo X, Zhou D, Ma Y (2009) Method development for estimating sensible heat flux over the Tibetan Plateau from CMA data. J Appl Meteorol Climatol 48: 2474–2486CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Xiaofeng Guo
    • 1
  • Kun Yang
    • 1
  • Long Zhao
    • 1
    • 2
  • Wei Yang
    • 1
  • Shenghai Li
    • 1
    • 2
  • Meilin Zhu
    • 1
    • 2
  • Tandong Yao
    • 1
  • Yingying Chen
    • 1
  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Graduate University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations