Advertisement

Boundary-Layer Meteorology

, Volume 138, Issue 1, pp 121–138 | Cite as

Numerical Simulations of the Impacts of Land-Cover Change on Cold Fronts in South-West Western Australia

  • J. Kala
  • T. J. Lyons
  • U. S. Nair
Article

Abstract

The south-west of Western Australia has experienced significant land-cover change as well as a decline in rainfall. Given that most precipitation in the region results from frontal passages, the impact of land-cover change on the dynamics of cold fronts is explored using the Regional Atmospheric Modeling System version 6.0. Frontal simulations are evaluated against high resolution atmospheric soundings, station observations, and gridded rainfall analyses and shown to reproduce the qualitative features of cold fronts. Land-cover change results in a decrease in total frontal precipitation through a decrease in boundary-layer turbulent kinetic energy and vertically integrated moisture convergence, and an increase in wind speed within the lower boundary layer. Such processes contribute to reduced convective rainfall under current vegetation cover.

Keywords

Cold fronts Land–atmosphere interactions Land-cover change Regional Atmospheric Modeling System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan RJ, Haylock MR (1993) Circulation features associated with the winter rainfall decrease in southwestern Australia. J Clim 6: 1356–1367CrossRefGoogle Scholar
  2. Anthes R (1984) Enhancement of convective precipitation by mesoscale variations in vegetative covering in semiarid regions. J Clim Appl Meteorol 23: 541–554CrossRefGoogle Scholar
  3. AUSLIG (1990) Australian Surveying and Land Information Group. Atlas of Australian Resources: vegetation. Commonwealth of Australia, Canberra, ACT, 64 ppGoogle Scholar
  4. Bates BC, Hope P, Ryan B, Smith I, Charles S (2008) Key findings from the Indian Ocean Climate Initiative and their impact on policy development in Australia. Clim Change 89: 339–354CrossRefGoogle Scholar
  5. Cai W, Cowan T (2006) SAM and regional rainfall in IPCC AR4 models: can anthropogenic forcing account for southwest Western Australian winter rainfall reduction. Geophys Res Lett 33: L24708. doi: 10.1029/2006GL028037 CrossRefGoogle Scholar
  6. Cai XM, Steyn DG (2000) Modelling study of sea breezes in a complex coastal environment. Atmos Environ 34: 2873–2885CrossRefGoogle Scholar
  7. Cotton WR, Pielke RA (2007) Human impacts on weather and climate. Cambridge University Press, New York, p 308Google Scholar
  8. Cotton WR, Pielke RA, Walko RL, Liston GE, Tremback CJ, Jiang H, McAnelly RL, Harrington JY, Nicholls ME, Carrio GG, McFadden JP (2003) rams 2001: current status and future directions. Meteorol Atmos Phys 82: 5–29CrossRefGoogle Scholar
  9. England MH, Ummenhofer CC, Santoso A (2006) Interannual rainfall extremes over southwest Western Australia linked to Indian Ocean climate variability. J Clim 19: 1948–1969CrossRefGoogle Scholar
  10. Esau IN, Lyons TJ (2002) Effect of sharp vegetation boundary on the convective atmospheric boundary layer. Agric For Meteorol 114: 3–13CrossRefGoogle Scholar
  11. Gentilli J (1971) Australian climate patterns. Thomas Nelson (Australia) Limited, Melbourne, p 285Google Scholar
  12. Gero AF, Pitman AJ (2006) The impact of land cover change on a simulated storm event in the Sydney basin. J Appl Meteorol Clim 45: 283–300CrossRefGoogle Scholar
  13. Gero AF, Pitman AJ, Narisma GT, Jacobson C, Pileke RA (2006) The impact of land cover change on storms in the Sydney Basin, Australia. Glob Planet Change 54: 57–78CrossRefGoogle Scholar
  14. Harrington JY (1997) The effects of radiative and microphysical processes on simulated warm and transition season Arctic stratus. Ph.D. Dissertation, Atmospheric Science Paper 637. PhD thesis, Colorado State University, 289 ppGoogle Scholar
  15. Hope PK, Drosdowsky W, Nicholls N (2006) Shifts in the synoptic systems influencing southwest Western Australia. Clim Dyn 26: 751–764CrossRefGoogle Scholar
  16. Huang X, Lyons TJ, Smith RCG (1995) Meteorological impact of replacing native perennial vegetation with annual agricultural species. Hydrol Process 9: 645–654CrossRefGoogle Scholar
  17. Hutchinson MF, Stein JA, Stein JL (2009) GEODATA 9 Second Digital Elevation Model (DEM-9S) Version 3. http://www.ga.gov.au/
  18. IOCI (2002) Indian Ocean Climate Initiative (IOCI)—Climate variability and change in southwest Western Australia. http://www.ioci.org.au/pdf/IOCI_TechnicalReport02.pdf. Accessed 22 Oct 2009
  19. Kain JS, Fritsch JM (1993) Covective parameterisation for mesoscale models: the Kain–Fritsch scheme. In: Emannuel A, Raymond DJ (eds) The representation of cumulus convection in numerical models. American Meteorological Society, Boston, MA, pp 165–170Google Scholar
  20. Kala J, Lyons TJ, Abbs DJ, Nair US (2010) Numerical simulations of the impacts of land-cover change on a southern sea breeze in south-west Western Australia. Boundary-Layer Meteorol 135: 485–503CrossRefGoogle Scholar
  21. Kanae S, Oki T, Musiake K (2001) Impact of deforestation on regional precipitation over the Indochina peninsula. J Hydrometeorol 2: 51–70CrossRefGoogle Scholar
  22. Kotroni V, Lagouvardos K, Kallos G (1998) Modelling study of the IOP2 cold front of the FRONTS 87 experiment. Meteorol Appl 5: 297–306CrossRefGoogle Scholar
  23. Lyons TJ (2002) Clouds prefer native vegetation. Meteorol Atmos Phys 80: 131–140CrossRefGoogle Scholar
  24. Lyons TJ, Schwerdtfeger P, Hacker JM, Foster IJ, Smith RCG, Huang X (1993) Land–atmosphere interaction in a semiarid region: the bunny fence experiment. Bull Am Meteorol Soc 16: 551–558Google Scholar
  25. Lyons TJ, Smith RCG, Huang X (1996) The impact of clearing for agriculture on the surface energy balance. Int J Clim 16: 551–558CrossRefGoogle Scholar
  26. Ma Y, Lyons TJ (2000) Numerical simulation of a sea-breeze under dominant synoptic conditions at Perth. Meteorol Atmos Phys 73: 89–103CrossRefGoogle Scholar
  27. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid dynamics problems. Rev Geophys Space Phys 20: 851–875CrossRefGoogle Scholar
  28. Meyers MP, Walko RL, Harrington JY, Cotton WR (1997) New RAMS cloud microphysics parameterization. Part II: the two-moment scheme. Atmos Res 45: 3–39CrossRefGoogle Scholar
  29. Miao JF, Kroon LJM, de Arellano JVG, Holtslag AAM (2003) Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorol Atmos Phys 84: 157–170CrossRefGoogle Scholar
  30. Nair US, Hjelmfelt MR, Pielke RA (1997) Numerical simulation of the 9–10 June 1972 Balck Hills storm using CSU RAMS. Mon Weather Rev 125: 1753–1766CrossRefGoogle Scholar
  31. Nicholls N (2010) Local and remote causes of the southern Australian autumn-winter rainfall decline 1958–2007. Clim Dyn 34: 835–845CrossRefGoogle Scholar
  32. Peel DR, Pitman AJ, Hughes LA, Narisma GT, Pielke RA (2005) The impact of realistic biophysical parameters for eucalypts on the simulation of the January climate of Australia. Environ Model Softw 20: 595–612CrossRefGoogle Scholar
  33. Pielke RA (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39: 151–177CrossRefGoogle Scholar
  34. Pielke RA, Cotton WR, Walko RL, Tremback CJ, Lyons WA, Grasso LD, Nicholls ME, Moran MD, Wesley DA, Lee TJ, Copeland JH (1992) A comprehensive meteorological modelling system-rams. Meteorol Atmos Phys 49: 69–91CrossRefGoogle Scholar
  35. Pielke RA, Walko RL, Steyaert LT, Vidale PL, Liston GE, Lyons WA, Chase TN (1999) The influence of anthropogenic landscape changes on weather in south Florida. Mon Weather Rev 127: 1663–1673CrossRefGoogle Scholar
  36. Pielke RA, Adegoke J, Beltrán-Przekurat A, Hiemstra CA, Lin J, Nair US, Niyogi D, Nobis TE (2007) An overview of regional land use and land cover impacts on rainfall. Tellus B 59: 587–601CrossRefGoogle Scholar
  37. Pitman AJ, Narisma GT, Pielke RA, Holbrook NJ (2004) Impact of land cover change on the climate of southwest Western Australia. J Geophys Res 109: D18109CrossRefGoogle Scholar
  38. Pitts RO, Lyons TJ (1989) Airflow over a two-dimensional escarpment. I: observations. Q J R Meteorol Soc 115: 965–981CrossRefGoogle Scholar
  39. Pitts RO, Lyons TJ (1990) Airflow over a two-dimensional escarpment. II: hydrostatic flow. Q J R Meteorol Soc 116: 363–378CrossRefGoogle Scholar
  40. Raupach MR, Briggs PR, Haverd V, King EA, Paget M, Trudinger CM (2008) Australian Water Availability Project. CSIRO Marine and Atmospheric Research, Canberra, Australia. http://www.csiro.au/awap. Accessed 22 Oct 2009
  41. Raupach MR, Briggs PR, Haverd V, King EA, Paget M, Trudinger CM (2009) Australian Water Availability Project (AWAP): CSIRO Marine and Atmospheric Research Component: Final Report for Phase 3. CAWCR Technical Report No. 013, 67 ppGoogle Scholar
  42. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15: 1609–1625CrossRefGoogle Scholar
  43. Ryan BF, Katzfey JJ, Abbs DJ, Jakob C, Lohmann U, Rockel B, Rotstayn LD, Stewart RE, Szeto KK, Tselioudis G, Yau MK (2000) Simulations of a cold front by cloud-resolving, limited-area, and large-scale models, and a model evaluation using in situ and satellite observations. Mon Weather Rev 128: 3218–3235CrossRefGoogle Scholar
  44. Samuel JM, Verdon DC, Sivapalan M, Franks SW (2006) Influence of Indian Ocean sea surface temperature variability on southwest Western Australian winter rainfall. Water Resour Res 42: W08402. doi: 10.1029/2005WR004672 CrossRefGoogle Scholar
  45. Smagorinsky JS (1963) General circulation experiments with primitive equations. I. The basic experiment. Mon Weather Rev 91: 99–164CrossRefGoogle Scholar
  46. Smith IN, McIntosh P, Ansell TJ, Reason CJC, McNinnes K (2000) Southwestern Western Australian winter rainfall and its association with Indian Ocean climate variability. Int J Clim 20: 1913–1930CrossRefGoogle Scholar
  47. Sturman A, Tapper N (1996) Climate and weather of Australia and New Zealand. Oxford University Press, Melbourne, p 476Google Scholar
  48. Timbal B, Arblaster JM, Power S (2006) Attribution of the late 20th century rainfall decline in South-West Australia. J Clim 19: 2046–2067CrossRefGoogle Scholar
  49. van Zomeren J, van Delden A (2007) Vertically integrated moisture flux convergence as a predictor of thunderstorms. Atmos Res 83: 435–445CrossRefGoogle Scholar
  50. Walko RL, Cotton WR, Meyers MP, Harrington JY (1995) New RAMS cloud microphysics parameterization. Part I: the single-moment scheme. Atmos Res 38: 29–62CrossRefGoogle Scholar
  51. Walko RL, Band LE, Baron J, Kittel TGF, Lammers R, Lee TJ, Ojima D, Pielke RA, Taylor C, Tague C, Tremback CJ, Vidale PL (2000) Coupled atmosphere–biosphere–hydrology models for environmental modeling. J Appl Meteorol 39: 931–944CrossRefGoogle Scholar
  52. Wright PB (1974) Seasonal rainfall in Southwestern Australia and the general circulation. Mon Weather Rev 102: 219–232CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Environmental ScienceMurdoch UniversityMurdochAustralia
  2. 2.Earth System Science Center, National Space Science and Technology CenterUniversity of Alabama in HuntsvilleHuntsvilleUSA
  3. 3.Centre of Excellence for Climate Change Woodland and Forest HealthMurdochAustralia

Personalised recommendations