Boundary-Layer Meteorology

, Volume 137, Issue 3, pp 493–507 | Cite as

Test of Scintillometer Saturation Correction Methods Using Field Experimental Data

Open Access


Saturation of large aperture scintillometer (LAS) signals can result in sensible heat flux measurements that are biased low. A field study with LASs of different aperture sizes and path lengths was performed to investigate the onset of, and corrections for, signal saturation. Saturation already occurs at \({C_n^2 \approx 0.074 D^{5/3} \lambda^{1/3} L^{-8/3}}\), where \({C_n^2}\) is the structure parameter of the refractive index, D is the aperture size, λ is the wavelength, L is the transect length, which is smaller than theoretically derived saturation limits. At a transect length of 1 km, a height of 2.5 m, and aperture ≈0.15 m the correction factor exceeds 5% already at \({C_n^2=2\times 10^{-12}{\rm m}^{-2/3}}\), which will affect many practical applications of scintillometry. The Clifford correction method, which only depends on \({C_n^2}\) and the transect geometry, provides good saturation corrections over the range of conditions observed in our study. The saturation correction proposed by Ochs and Hill results in correction factors that are too small in large saturation regimes. An inner length scale dependence of the saturation correction factor was not observed. Thus for practical applications the Clifford correction method should be applied.


Large aperture scintillometer Sensible heat flux Signal saturation Wave propagation 



We acknowledge: funding from USGS-NIWR award number 06HQGR0187 and NMSU-WRRI contract Q01112, UC San Diego startup funding; Sevilleta National Wildlife Refuge staff for assistance with the experiment; Emily Engle and Roger Rentaria for assistance in the field; insightful comments by Henk de Bruin and an anonymous reviewer; instrumentation and access to facilities by Jan Hendrickx, New Mexico Tech.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. Andreas E (1990) Selected papers on turbulence in a refractive medium, vol 25. SPIE—The International Society for Optical Engineering, Bellingham, 693 ppGoogle Scholar
  2. Churnside J (1990) A spectrum of refractive turbulence in the turbulent atmosphere. J Mod Opt 37(1): 13–16CrossRefGoogle Scholar
  3. Clifford S, Ochs G, Lawrence R (1974) Saturation of optical scintillation by strong turbulence. J Opt Soc Am 64: 148–154CrossRefGoogle Scholar
  4. Ezzahar J, Chehbouni A, Hoedjes J, Er-Raki S, Boulet G, Bonnefond JM, de Bruin HAR (2007) The use of the scintillation technique for monitoring seasonal water consumption of olive orchards in a semi-arid region. Agric Water Manag 89: 173–184CrossRefGoogle Scholar
  5. Frehlich RG (1992) Laser scintillation measurement of the temperature spectrum in the atmospheric surface layer. J Atmos Sci 49: 1494–1509CrossRefGoogle Scholar
  6. Frehlich RG, Ochs GR (1990) Effects of saturation on the optical scintillometer. Appl Opt 29: 548–553CrossRefGoogle Scholar
  7. Frenzen P, Vogel CA (1992) The turbulent kinetic energy budget in the atmospheric surface layer: a review and an experimental reexamination in the field. Boundary-Layer Meteorol 60(1–2): 49–76CrossRefGoogle Scholar
  8. Hafeez M, Andreini M, Liebe J, Friesen J, Marx A, Giesen N (2006) Hydrological parameterization through remote sensing in Volta basin, West Africa. Intl J River Basin Manag 4: 1–8Google Scholar
  9. Hartogensis OK (2006) Exploring scintillometry in the stable atmospheric surface layer. Ph.D. thesis, Wageningen University, Wageningen, The Netherlands, 240 ppGoogle Scholar
  10. Hartogensis OK, de Bruin HAR (2005) Monin-Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116(2): 253–276CrossRefGoogle Scholar
  11. Hartogensis OK, Watts C, Rodriguez JC, de Bruin HAR (2003) Derivation of an effective height for scintillometers: La Poza experiment in northwest Mexico. J Hydrometeorol 4: 915–928CrossRefGoogle Scholar
  12. Hartogensis OK, van Kesteren B, Evans J, Bradford J, Moene AF, Holtslag AM (2008) Sensible and latent heat fluxes with an optical and millimeter wave scintillometer system at the Chilbolton test range. In: Proceedings 8th annual meeting of the European Meteorological Society (EMS), Amsterdam, The NetherlandsGoogle Scholar
  13. Hemakumara H, Chandrapala L, Moene AF (2003) Evapotranspiration fluxes over mixed vegetation areas measured from a large aperture scintillometer. Agric Water Manag 58: 109–122CrossRefGoogle Scholar
  14. Hendrickx J, Kleissl J, Gomez-Velez J, Hong SH, Fabrega-Duque J, Vega D, Moreno-Ramirez H, Ogden F (2007) Scintillometer networks for calibration and validation of energy balance and soil moisture remote sensing algorithms. In: Proceedings of SPIE—International Society for Optical Engineering, vol 6565, 65650WGoogle Scholar
  15. Hill RJ (1981) Saturation resistance and inner-scale resistance of a large-aperture scintillometer: a case study. Appl Opt 20: 3822–3824CrossRefGoogle Scholar
  16. Hill RJ (1997) Algorithms for obtaining atmospheric surface-layer fluxes from scintillation measurements. J Atmos Oceanic Technol 14: 456–467CrossRefGoogle Scholar
  17. Hill RJ, Clifford S (1981) Theory of saturation of optical scintillation by strong turbulence for arbitrary refractive-index spectra. J Opt Soc Am 71: 675–686CrossRefGoogle Scholar
  18. Hill RJ, Ochs G (1978) Fine calibration of large-aperture optical scintillometers and an optical estimate of inner scale of turbulence. Appl Opt 17(22): 3608–3612CrossRefGoogle Scholar
  19. Hill RJ, Ochs G, Wilson J (1992) Measuring surface-layer fluxes of heat and momentum using optical scintillation. Boundary-Layer Meteorol 58: 391–408CrossRefGoogle Scholar
  20. Kleissl J, Gomez J, Hong SH, Hendrickx J, Rahn T, Defoor W (2008a) Large aperture scintillometer intercomparison study. Boundary-Layer Meteorol 128: 133–150CrossRefGoogle Scholar
  21. Kleissl J, Gomez J, Hendrickx J, Hartogensis OK, de Bruin HAR (2008b) The Sevilleta scintillometer saturation field experiment. In: 8th annual meeting of the European Meteorological Society 7th ECAC, session AW6Google Scholar
  22. Kleissl J, Hong SH, Hendrickx J (2009a) New Mexico scintillometer network: supporting remote sensing and hydrologic and meteorological models. Bull Am Meteorol Soc 90(2): 207–218CrossRefGoogle Scholar
  23. Kleissl J, Watts C, Rodriguez J, Naif S, Vivoni E (2009b) Scintillometer intercomparison study—continued. Boundary-Layer Meteorol 130(3): 437–443CrossRefGoogle Scholar
  24. Kohsiek W, Meijninger W, de Bruin HAR, Beyrich F (2006) Saturation of the large aperture scintillometer. Boundary-Layer Meteorol 121: 111–126CrossRefGoogle Scholar
  25. Martano P (1999) Estimation of surface roughness length and displacement height from single-level sonic anemometer data. J Appl Meteorol 39(5): 708–715CrossRefGoogle Scholar
  26. Meijninger W, Hartogensis OK, Kohsiek W, Hoedjes J, Zuurbier R, de Bruin HAR (2002) Determination of area averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface—Flevoland field experiment. Boundary-Layer Meteorol 105: 63–83CrossRefGoogle Scholar
  27. Moene AF, Meijninger W, Hartogensis OK, Kohsiek W, de Bruin HAR (2004) A review of the relationships describing the signal of a Large Aperture Scintillometer. Internal report 2004/2, Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands, 40 ppGoogle Scholar
  28. Moene AF, Meijninger W, Hartogensis OK, Heusinkveld B, de Bruin HAR (2005) The effect of finite accuracy in the manufacturing of large aperture scintillometers. Internal report 2005/1, Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands, 99 ppGoogle Scholar
  29. Moore C (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37(1–2): 17–35CrossRefGoogle Scholar
  30. Ochs GR, Hill RJ (1982) A study of factors influencing the calibration of optical \({C_n^2}\) meters. NOAA Technical Memorandum ERL WPL-106. National Technical Information Service, SpringfieldGoogle Scholar
  31. Schotanus P, Nieuwstadt F, de Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol 26(1): 81–93CrossRefGoogle Scholar
  32. Thiermann V (1996) Surface Layer Scintillometer SLS20/SLS40. User’s manual. Scintec AG, Tubingen, 74 ppGoogle Scholar
  33. Wang T, Ochs G, Clifford S (1978) A saturation-resistant optical scintillometer to measure \({C_n^2}\). J Opt Soc Am 68: 334–338CrossRefGoogle Scholar
  34. Wilczak J, Oncley S, Stage S (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99: 127–150CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of Meteorology and Air QualityWageningen UniversityWageningenThe Netherlands
  3. 3.Department of Earth and Environmental SciencesNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations