Boundary-Layer Meteorology

, Volume 137, Issue 2, pp 307–326 | Cite as

Determining the Oxygen Isotope Composition of Evapotranspiration Using Eddy Covariance

  • T. J. Griffis
  • S. D. Sargent
  • X. Lee
  • J. M. Baker
  • J. Greene
  • M. Erickson
  • X. Zhang
  • K. Billmark
  • N. Schultz
  • W. Xiao
  • N. Hu
Research Note

Abstract

The oxygen isotope composition of evapotranspiration (δF) represents an important tracer in the study of biosphere–atmosphere interactions, hydrology, paleoclimate, and carbon cycling. Here, we demonstrate direct measurement of δF based on the eddy-covariance and tunable diode laser spectroscopy (EC-TDL) techniques. Results are presented from laboratory experiments and field measurements in agricultural ecosystems. The field measurements were obtained during the growing seasons of 2008 and 2009. Water vapour mixing ratios (χw) and fluxes (F) were compared using EC-TDL and traditional eddy-covariance and infrared gas analyser techniques over a soybean canopy in 2008. The results indicate that χw and F agreed to within 1 and 6%, respectively. Measurements of δF above a corn canopy in 2009 revealed a diurnal pattern with an expected progressive 18O enrichment through the day ranging from about −20‰ before sunrise to about −5‰ in late afternoon. The isotopic composition of evapotranspiration was similar to the xylem water isotope composition (δx = −7.2‰) for short periods of time during 1400–1800 LST, indicating near steady-state conditions. Finally, the isotopic forcing values (IF) revealed a diurnal pattern with mean maximum values of 0.09ms−1‰ at midday. The IF values could be described as an exponential relation of relative humidity confirming previous model calculations and measurements over a soybean canopy in 2006. These patterns and comparisons indicate that long-term continuous isotopic water vapour flux measurements based on the eddy-covariance technique are feasible and can provide new insights related to the oxygen isotope fractionation processes at the canopy scale.

Keywords

Eddy covariance Evapotranspiration Isotopic discrimination Isotopic forcing Oxygen isotopes Tunable diode laser spectroscopy Water vapour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angert A, Lee JE, Yakir D (2008) Seasonal variations in the isotopic composition of near-surface water vapour in the eastern mediterranean. Tellus 60: 674–684CrossRefGoogle Scholar
  2. Baker JM, Griffis TJ (2010) A simple, accurate, field-portable mixing ratio generator and Rayleigh distillation device. Agric For Meteorol (in press)Google Scholar
  3. Bowling DR, Delany AC, Turnipseed AA, Baldocchi DD, Monson RK (1999) Modification of the relaxed eddy accumulation technique to maximize measured scalar mixing ratio differences in updrafts and downdrafts. J Geophys Res 104(D8): 9121–9133CrossRefGoogle Scholar
  4. Bowling DR, Tans PP, Monson RK (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Glob Change Biol 7(2): 127–145CrossRefGoogle Scholar
  5. Brand W, Geilmann H, Crosson E, Rella C (2009) Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry; a case study on delta h-2 and delta o-18 of pure water samples and alcohol/water mixtures. Rapid Commun Mass Spectrom 23: 1879–1884CrossRefGoogle Scholar
  6. Brown D, Worden J, Noone D (2008) Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space. J Geophys Res 113(D15). doi:10.1029/2007JD009676
  7. Griffis TJ, Baker JM, Sargent SD, Tanner BD, Zhang J (2004) Measuring fieldscale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. Agric For Meteorol 124(1–2): 15–29CrossRefGoogle Scholar
  8. Griffis TJ, Lee X, Baker JM, Sargent SD, King JY (2005) Feasibility of quantifying ecosystem-atmosphere C18O16O exchange using laser spectroscopy and the flux-gradient method. Agric For Meteorol 135(1–4): 44–60CrossRefGoogle Scholar
  9. Griffis TJ, Sargent SD, Baker JM, Lee X, Tanner BD, Greene J, Swiatek E, Billmark K (2008) Direct measurement of biosphere–atmosphere isotopic CO2 exchange using the eddy covariance technique. J Geophys Res 113: D08304. doi:10.1029/2007JD009297 CrossRefGoogle Scholar
  10. He H, Smith R (1999) Stable isotope composition of water vapor in the atmospheric boundary layer above the forests of new England. J Geophys Res 104: 11657–11673CrossRefGoogle Scholar
  11. Herbin H, Hurtmans D, Turquety S, Wespes C, Barret B, Hadji-Lazaro J, Clerbaux C, Coheur PF (2007) Global distributions of water vapour isotopologues retrieved from IMG/ADEOS data. Atmos Chem Phys 7(14): 3957–3968CrossRefGoogle Scholar
  12. Jacob H, Sonntag C (1991) An 8-year record of the seasonal-variation of H-2 and O-18 in atmospheric water-vapor and precipitation at Heidelberg, Germany. Tellus 43B(3): 291–300Google Scholar
  13. Lai C, Ehleringer J, Bond B, Paw UKT (2006) Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the delta O-18 of water vapour in Pacific Northwest coniferous forests. Plant Cell Environ 29(1): 77–94CrossRefGoogle Scholar
  14. Lee X, Sargent S, Smith R, Tanner B (2005) In-situ measurement of the water vapor 18O/16O isotope ratio for atmospheric and ecological applications. J Atmos Ocean Technol 22: 555–565CrossRefGoogle Scholar
  15. Lee XH, Kim K, Smith R (2007) Temporal variations of the 18O/16O signal of the whole-canopy transpiration in a temperate forest. Glob Biogeochem Cycles 21(3): GB3013. doi:10.1029/2006GB002871 CrossRefGoogle Scholar
  16. Lee X, Griffis T, Baker J, Billmark K, Kim K, Welp L (2009) Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Glob Biogeochem Cycles 23: GB1002. doi:10.1029/2008GB003331 CrossRefGoogle Scholar
  17. Lis G, Wassenaar LI, Hendry MJ (2008) High-precision laser spectroscopy D/H and O-18/O-16 measurements of microliter natural water samples. Anal Chem 80(1): 287–293. doi:10.1021/ac701716q CrossRefGoogle Scholar
  18. Majoube M (1971) Fractionnement en oxygene-18 et en deuterium entre l’eau et sa vapeur. J Chim Phys 68: 1423–1436Google Scholar
  19. Sturm P, Knohl A (2009) Water vapor δ 2H and δ 18O measurements using off-axis integrated cavity output spectroscopy. Atmos Meas Tech Discuss 2: 2055–2085CrossRefGoogle Scholar
  20. Wang L, Caylor K, Dragoni D (2009) On the calibration of continuous, high-precision δ 18O and δ 2h measurements using an off-axis integrated cavity output spectrometer. Rapid Commun Mass Spectrom 23: 530–536CrossRefGoogle Scholar
  21. Welp LR, Lee X, Kim K, Griffis TJ, Billmark KA, Baker JM (2008) δ 18O of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy. Plant Cell Environ 31(9): 1214–1228. doi:10.1111/j.1365-3040.2008.01826.x CrossRefGoogle Scholar
  22. Wen XF, Sun XM, Zhang SC, Yu GR, Sargent SD, Lee X (2008) Continuous measurement of water vapor D/H and O-18/O-16 isotope ratios in the atmosphere. J Hydrol 349(3–4): 489–500. doi:10.1016/j.jhydrol.2007.11.021 CrossRefGoogle Scholar
  23. West AG, Goldsmith G, Brooks P, Dawson T (2010) Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters. Rapid Commun Mass Specrom 24: 1948–1954CrossRefGoogle Scholar
  24. Worden J, Bowman K, Noone D, Beer R, Clough S, Eldering A, Fisher B, Goldman A, Gunson M, Herman R, Kulawik SS, Lampel M, Luo M, Osterman G, Rinsland C, Rodgers C, Sander S, Shephard M, Worden H (2006) Tropospheric emission spectrometer observations of the tropospheric HDO/H2O ratio: estimation approach and characterization. J Geophys Res 111(D16). doi:10.1029/2005JD006606
  25. Worden J, Noone D, Bowman K (2007) Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445(7127): 528–532CrossRefGoogle Scholar
  26. Xiao W, Lee X, Griffis T, Kim K, Welp L, Yu Q (2010) A modeling investigation of canopy-air oxygen isotopic exchange of water vapor and carbon dioxide in a soybean field. J Geophys Res 115: G01004. doi:10.1029/2009JG001163 CrossRefGoogle Scholar
  27. Yakir D, Wang XF (1996) Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature 380(6574): 515–517CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • T. J. Griffis
    • 1
  • S. D. Sargent
    • 2
  • X. Lee
    • 3
  • J. M. Baker
    • 4
  • J. Greene
    • 2
  • M. Erickson
    • 1
  • X. Zhang
    • 3
  • K. Billmark
    • 1
  • N. Schultz
    • 1
  • W. Xiao
    • 5
  • N. Hu
    • 5
  1. 1.Department of Soil, Water, and ClimateUniversity of Minnesota-Twin CitiesSaint PaulUSA
  2. 2.Campbell Scientific Inc.LoganUSA
  3. 3.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA
  4. 4.Agricultural Research ServiceUnited States Department of AgricultureSaint PaulUSA
  5. 5.School of Applied MeteorologyNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations