Advertisement

Boundary-Layer Meteorology

, Volume 136, Issue 3, pp 489–513 | Cite as

In-Street Wind Direction Variability in the Vicinity of a Busy Intersection in Central London

  • Ahmed A. Balogun
  • Alison S. Tomlin
  • Curtis R. Wood
  • Janet F. Barlow
  • Stephen E. Belcher
  • Robert J. Smalley
  • Justin J. N. Lingard
  • Sam J. Arnold
  • Adrian Dobre
  • Alan G. Robins
  • Damien Martin
  • Dudley E. Shallcross
Article

Abstract

We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk ) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction (θ ref ) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique roof-top flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15- min mean θ ref of 5°–10°) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.

Keywords

DAPPLE field campaign Dispersion Flow bifurcation Flow channelling Recirculation Urban intersection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad MK, Chaudhry KK (2005) Wind tunnel simulation studies on dispersion at urban street canyons and intersections—a review. J Wind Eng Ind Aerodyn 93: 697–717CrossRefGoogle Scholar
  2. Allwine KJ, Leach MJ, Stockham LW, Shinn JS, Hosker RP, Bowers JF, Pace JC (2004) Overview of joint urban 2003—an atmospheric dispersion study in Oklahoma City. Preprints, Symposium on planning, nowcasting, and forecasting in the urban zone, Seattle, WA. AMS, CDROM, J7.1, 9 ppGoogle Scholar
  3. Arnold S, ApSimon H, Barlow JF, Belcher S, Bell M, Boddy JWD, Britter R, Cheng H, Clark R, Colvile R, Dimitroulopoulou S, Dobre A, Greally B, Kaur S, Knights A, Lawton T, Makepeace A, Martin D, Neophytou M, Neville S, Nieuwenhuijsen M, Nickless G, Price C, Robins A, Shallcross D, Simmonds P, Smalley R, Tate J, Tomlin AS, Wang H, Walsh P (2004) Dispersion of air pollution and penetration into the local environment, DAPPLE. Sci Total Environ 332: 139–153CrossRefGoogle Scholar
  4. Barlow AF, Dobre A, Smalley RJ, Arnold SJ, Tomlin AS, Belcher SE (2009) Referencing of street-level flows: results from the DAPPLE 2004 campaign in London, UK. Atmos Environ 43: 5536–5544CrossRefGoogle Scholar
  5. Boddy JWD, Smalley RJ, Dixon NS, Tate JE, Tomlin AS (2005) The spatial variability in concentrations of a traffic-related pollutant in two street canyons in York, UK. Part I: the influence of background winds. Atmos Environ 39: 3147–3161CrossRefGoogle Scholar
  6. Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35: 469–496CrossRefGoogle Scholar
  7. Carpentieri M, Robins A, Baldi S (2009) Three-dimensional mapping of wind flow at an urban canyon intersection. Boundary-Layer Meteorol 133: 277–296CrossRefGoogle Scholar
  8. DePaul FF, Sheih CM (1986) Measurements of wind velocities in a street canyon. Atmos Environ 20: 455–459CrossRefGoogle Scholar
  9. Dixon NS, Boddy JWD, Smalley RJ, Tomlin AS (2006) Evaluation of a turbulent flow and dispersion model in a typical street canyon in York, UK. Atmos Environ 40: 958–972CrossRefGoogle Scholar
  10. Dobre A, Arnold SJ, Smalley RJ, Boddy JWD, Barlow JF, Tomlin AS, Belcher SE (2005) Flow field measurements in the in the proximity of an urban in London, UK. Atmos Environ 39: 4647–4657CrossRefGoogle Scholar
  11. Eliasson I, Offerle B, Grimmond CSB, Lindqvist S (2006) Wind fields and turbulence statistics in an urban street canyon. Atmos Environ 40: 1–16CrossRefGoogle Scholar
  12. Hanna SR, Brown MJ, Camelli FE, Chan S, Coirier WJ, Hansen OR, Huber AH, Kim S, Reynolds RM (2006) Detailed simulations of atmospheric flow and dispersion in urban downtown areas by computational fluid dynamics (CFD) models—an application of five CFD models to Manhattan. Bull Am Meteorol Soc 87: 1713–1726CrossRefGoogle Scholar
  13. Hanna SR, White J, Zhou Y (2007) Observed winds, turbulence and dispersion in built-up downtown areas of Oklahoma City and Manhattan. Boundary-Layer Meteorol 125: 441–468CrossRefGoogle Scholar
  14. Johnson GT, Hunter LJ (1999) Some insights into typical urban canyons airflows. Atmos Environ 33: 3991–3999CrossRefGoogle Scholar
  15. Kastner-Klein P, Plate EJ (1999) Wind-tunnel study of concentration fields in street canyons. Atmos Environ 33: 3973–3979CrossRefGoogle Scholar
  16. Kastner-Klein P, Rotach MW (2004) Mean flow and turbulence characteristics in an urban roughness sublayer. Boundary-Layer Meteorol 111: 55–84CrossRefGoogle Scholar
  17. Klein P, Clark JV (2007) Flow variability in a North American downtown canyon. J Appl Meteorol Climatol 46: 851–877CrossRefGoogle Scholar
  18. Klein P, Leitl B, Schatzmann M (2007) Driving physical mechanisms of flow and dispersion in urban canopies. Int J Climatol 27: 1887–1907CrossRefGoogle Scholar
  19. Longley ID, Gallagher MW, Dorsey JR, Flynn M, Barlow JF (2004) Short-term measurements of airflow and turbulence in two street canyons in Manchester. Atmos Environ 38: 69–79CrossRefGoogle Scholar
  20. Macdonald RW (2000) Modeling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol 97: 25–45CrossRefGoogle Scholar
  21. Martin D, Price CS, White IR, Nickless G, Dobre A, Shallcross DE (2008) A study of pollutant concentration variability in an urban street under low wind speeds. Atmos Sci Lett 9: 147–152CrossRefGoogle Scholar
  22. Nakamura Y, Oke TR (1988) Wind, temperature and stability conditions in an east–west oriented urban canyon. Atmos Environ 22: 2691–2700CrossRefGoogle Scholar
  23. Nielson M (2000) Turbulent ventilation of a street. Environ Monit Assess 65: 389–396CrossRefGoogle Scholar
  24. Oke TR (1976) The distinction between canopy and boundary-layer heat island. Atmosphere 14: 269–277Google Scholar
  25. Raupach MR, Thorn AS, Edwards I (1980) A wind-tunnel study of turbulent flow close to regularly arranged rough surfaces. Boundary-Layer Meteorol 18: 373–397CrossRefGoogle Scholar
  26. Robins A, Savory E, Scaperdas A, Grigoriadis D (2002) Spatial variability and source–receptor relations at a street intersection. Water Air Soil Pollut Focus 2: 381–393CrossRefGoogle Scholar
  27. Rotach MW (1995) Profiles of turbulence statistics in and above an urban street canyon. Atmos Environ 29: 1473–1486CrossRefGoogle Scholar
  28. Rotach MW (1999) On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos Environ 33: 4001–4008CrossRefGoogle Scholar
  29. Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Feddersen B, Gryning SE, Martucci G, Mayer H, Mitev V, Oke TR, Parlow E, Richner H, Roth M, Roulet YA, Ruffieux D, Salmond J, Schatzmann M, Vogt J (2005) BUBBLE—an urban boundary layer meteorology project. Theor Appl Climatol 81: 231–261CrossRefGoogle Scholar
  30. Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126: 941–990CrossRefGoogle Scholar
  31. Scaperdas A, Colvile RN (1999) Assessing the representativeness of monitoring data from an urban intersection site in central London, UK. Atmos Environ 33: 661–674CrossRefGoogle Scholar
  32. Scaperdas A, Robins AG, Colville RN (2000) Flow visualisation and tracer dispersion experiments at street canyon intersections. Int J Environ Pollut 14: 526–537Google Scholar
  33. Sculley RD (1989) Vehicle emission rate analysis for carbon monoxide hot spot modelling. J Air Pollut Control Assoc 39: 1334–1343Google Scholar
  34. Shallcross DE, Martin D, Price CS, Nickless G, White IR, Petersson F, Britter RE, Neophytou MK, Tate JE, Tomlin AS, Barlow JF, Robins A (2009) Short range dispersion experiments using fixed and moving sources. Atmos Sci Lett 10: 59–65CrossRefGoogle Scholar
  35. Smalley RJ, Tomlin AS, Dixon NS, Boddy JWD (2008) The influence of background wind direction on the roadside turbulent velocity field within a complex urban street. Q J R Meteorol Soc 134: 1371–1384CrossRefGoogle Scholar
  36. Soulhac L, Mejean P, Perkins R (2001) Modelling the transport and dispersion of pollutants in street canyons. Int J Environ Pollut 16: 404–416Google Scholar
  37. Soulhac L, Garbero V, Salizzoni P, Mejean P, Perkins RJ (2009) Flow and dispersion in street intersections. Atmos Environ 43: 2981–2996CrossRefGoogle Scholar
  38. Sugawara H, Hagishima A, Narita K, Ogawa H, Yamano M (2008) Temperature and wind distribution in an E-W-oriented urban street canyon. Sci Online Lett Atmos 4: 53–56Google Scholar
  39. Tate J, Ropkins K, Goodman P, Oates C, Chen H, Bell M, Tomlin A, Balogun A, Smalley R (2009) The influence of traffic congestion, synoptic and in-street winds on NO2 concentrations around a congested intersection: a measurement study. In: Proceedings of the 7th international conference on air quality—science and application, CDROM, 4 ppGoogle Scholar
  40. Tomlin AS, Smalley RJ, Boddy JWD, Tate JE, Arnold SJ, Dobre A, Barlow JF, Belcher SE (2009) A field study of factors influencing the concentrations of a traffic related pollutant in the vicinity of a complex urban junction. Atmos Environ 43: 5027–5037CrossRefGoogle Scholar
  41. Vardoulakis S, Fisher BEA, Pericleou K, Gonzalez-Flesca N (2003) Modelling air quality in street canyons: a review. Atmos Environ 37: 155–182CrossRefGoogle Scholar
  42. Wang X, McNamara KF (2007) Effects of street orientation on dispersion at or near urban street intersections. J Wing Eng Ind Aerodyn 95: 1526–1540CrossRefGoogle Scholar
  43. Wood CR, Arnold SJ, Balogun AA, Barlow JF, Belcher SE, Britter RE, Cheng H, Dobre A, Lingard JJN, Martin D, Neophytou MK, Petersson FK, Robins AG, Shallcross DE, Smalley RJ, Tate JE, Tomlin AS, White IR (2009) Dispersion experiments in central London: the 2007 DAPPLE project. Bull Am Meteorol Soc 90: 955–969CrossRefGoogle Scholar
  44. Zamurs J (1990) Intersection carbon monoxide modelling. J Air Waste Manag Assoc 40: 769–771Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ahmed A. Balogun
    • 1
    • 7
  • Alison S. Tomlin
    • 1
  • Curtis R. Wood
    • 2
  • Janet F. Barlow
    • 2
  • Stephen E. Belcher
    • 2
  • Robert J. Smalley
    • 1
    • 3
  • Justin J. N. Lingard
    • 1
  • Sam J. Arnold
    • 4
  • Adrian Dobre
    • 2
  • Alan G. Robins
    • 5
  • Damien Martin
    • 6
  • Dudley E. Shallcross
    • 6
  1. 1.Energy and Resources Research Institute, SPEMEUniversity of LeedsLeedsUK
  2. 2.Department of MeteorologyUniversity of ReadingReadingUK
  3. 3.Centre for Australian Weather and Climate Research (CAWCR)Bureau of MeteorologyMelbourneAustralia
  4. 4.Golder Associates (UK) LtdNottinghamshireUK
  5. 5.EnFlo, Department of EngineeringUniversity of SurreyGuildfordUK
  6. 6.School of ChemistryUniversity of BristolBristolUK
  7. 7.Department of MeteorologyFederal University of Technology, AkureAkureNigeria

Personalised recommendations