Boundary-Layer Meteorology

, Volume 136, Issue 2, pp 325–340 | Cite as

Flux Footprints Over an Undulating Surface

Research Note

Abstract

The flux footprint probability distribution (FPD) functions for near-surface receptors over an idealised undulating surface are evaluated using a backward Lagrangian stochastic model. The wind and turbulence fields employed to drive the stochastic model are derived from large-eddy simulations, in which the horizontal wind aligns with the surface-elevation-varying direction. The flux FPD for a receptor is affected by flow divergence or convergence, and varies with the receptor’s location. The widest crosswind-integrated FPD (CIFPD) curve with the smallest peak value appears when the receptor is located in the crest area, while the narrowest CIFPD curve with the largest peak value appears when the receptor is located in the windward area. Experiments are designed to highlight the impact of the horizontal homogeneity assumption on the estimation of the FPD. When the receptor is located in the area with surface-wind convergence, the peak value of the CIFPD is larger than its counterpart under assumed horizontally homogeneous flow conditions, with the peak position being closer to the receptor. The case is reversed when the receptor is located in the area with surface-wind divergence. Similar results are obtained when the CIFPD derived from an analytical footprint model (developed under the assumption of horizontally homogeneous flow conditions) is compared with that from the stochastic model over the undulating surface. The analytical model fails to simulate the CIFPD in the local downwind area under weak wind conditions due to the longitudinal wind fluctuation not being considered.

Keywords

Footprint distribution function Lagrangian stochastic model Large-eddy simulation Undulating surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amiro BD (1998) Footprint climatologies for evapotranspiration in a boreal catchment. Agric For Meteorol 90(3): 195–201. doi:10.1016/S0168-1923(97)00096-8 CrossRefGoogle Scholar
  2. Baldocchi D (1997) Flux footprints within and over forest canopies. Boundary-Layer Meteorol 85(2): 273–292. doi:10.1023/A:1000472717236 CrossRefGoogle Scholar
  3. Bryan GH, Fritsch JM (2002) A benchmark simulation for moist nonhydrostatic numerical models. Mon Weather Rev 130(12): 2917–2928. doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2 CrossRefGoogle Scholar
  4. Cai XH, Leclerc MY (2007) Forward-in-time and backward-in-time dispersion in the convective boundary layer: the concentration footprint. Boundary-Layer Meteorol 123(2): 201–218. doi:10.1007/s10546-006-9141-x CrossRefGoogle Scholar
  5. Cai X, Peng G, Guo X, Leclerc MY (2008) Evaluation of backward and forward Lagrangian footprint models in the surface layer. Theor Appl Climatol 93(3–4): 207–223. doi:10.1007/s00704-007-0334-0 CrossRefGoogle Scholar
  6. Chen BZ, Black TA, Coops NC, Hilker T, Trofymow JA, Morgenstern K (2009) Assessing tower flux footprint climatology and scaling between remotely sensed and eddy covariance measurements. Boundary-Layer Meteorol 130(2): 137–167. doi:10.1007/s10546-008-9339-1 CrossRefGoogle Scholar
  7. Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18(4): 495–527CrossRefGoogle Scholar
  8. Dupont S, Brunet Y, Finnigan JJ (2008) Large-eddy simulation of turbulent flow over a forested hill: validation and coherent structure identification. Q J Roy Meteorol Soc 134(636): 1911–1929. doi:10.1002/qj.328 CrossRefGoogle Scholar
  9. Durran DR, Klemp JB (1983) A compressible model for the simulation of moisture mountain waves. Mon Weather Rev 111: 2341–2361. doi:10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2 CrossRefGoogle Scholar
  10. Finn D, Lamb B, Leclerc MY, Horst TW (1996) Experimental evaluation of analytical and Lagrangian surface-layer flux footprint models. Boundary-Layer Meteorol 80(3): 283–308. doi:10.1007/BF00119546 Google Scholar
  11. Finnigan JJ, Belcher SE (2004) Flow over a hill covered with a plant canopy. Q J Roy Meteorol Soc 130(596): 1–29. doi:10.1256/qj.02.177 CrossRefGoogle Scholar
  12. Flesch TK (1996) The footprint for flux measurements, from backward Lagrangian stochastic models. Boundary-Layer Meteorol 78(3–4): 399–404. doi:10.1007/BF00120943 CrossRefGoogle Scholar
  13. Flesch TK, Wilson JD (1992) A two-dimensional trajectory-simulation model for non-Gaussian, inhomogeneous turbulence within plant canopies. Boundary-Layer Meteorol 61(4): 349–374. doi:10.1007/BF00119097 CrossRefGoogle Scholar
  14. Flesch TK, Wilson JD, Yee E (1995) Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions. J Appl Meteorol 34(6): 1320–1332. doi:10.1175/1520-0450(1995)034<1320:BTLSDM>2.0.CO;2 CrossRefGoogle Scholar
  15. Foken T, Leclerc MY (2004) Methods and limitations in validation of footprint models. Agric For Meteorol 127(3–4): 223–234. doi:10.1016/j.agrformet.2004.07.015 CrossRefGoogle Scholar
  16. Gockede M, Thomas C, Markkanen T, Mauder M, Ruppert J, Foken T (2007) Sensitivity of Lagrangian stochastic footprints to turbulence statistics. Tellus B 59(3): 577–586. doi:10.1111/j.1600-0889.2007.00275.x CrossRefGoogle Scholar
  17. Gryning SE, Holtslag AAM, Irwin JS, Sivertsen B (1987) Applied dispersion modelling based on meteorological scaling parameters. Atmos Environ 21: 79–89. doi:10.1016/0004-6981(87)90273-3 CrossRefGoogle Scholar
  18. Horst TW, Weil JC (1992) Footprint estimation for scalar flux measurements in the atmospheric surface-layer. Boundary-Layer Meteorol 59(3): 279–296. doi:10.1007/BF00119817 CrossRefGoogle Scholar
  19. Kang S-L, Davis KJ (2008) The effects of mesoscale surface heterogeneity on the fair-weather convective atmospheric boundary layer. J Atmos Sci 65(10): 3197–3213. doi:10.1175/2008JAS2390.1 CrossRefGoogle Scholar
  20. Klaassen W, Sogachev A (2006) Flux footprint simulation downwind of a forest edge. Boundary-Layer Meteorol 121(3): 459–473. doi:10.1007/s10546-006-9078-0 CrossRefGoogle Scholar
  21. Kljun N, Rotach MW, Schmid HP (2002) A three-dimensional backward Lagrangian footprint model for a wide range of boundary-layer stratifications. Boundary-Layer Meteorol 103(2): 205–226. doi:10.1023/A:1014556300021 CrossRefGoogle Scholar
  22. Kljun N, Kormann R, Rotach MW, Meixer FX (2003) Comparison of the Lagrangian footprint model LPDM-B with an analytical footprint model. Boundary-Layer Meteorol 106(2): 349–355. doi:10.1023/A:1021141223386 CrossRefGoogle Scholar
  23. Kljun N, Calanca P, Rotach MW, Schmid HP (2004) A simple parameterization for flux footprint predictions. Boundary-Layer Meteorol 112(3): 503–523. doi:10.1023/B:BOUN.0000030653.71031.96 CrossRefGoogle Scholar
  24. Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol 99(2): 207–224. doi:10.1023/A:1018991015119 CrossRefGoogle Scholar
  25. Leclerc MY, Thurtell GW (1990) Footprint prediction of scalar fluxes using a Markovian analysis. Boundary-Layer Meteorol 52(3): 247–258. doi:10.1007/BF00122089 CrossRefGoogle Scholar
  26. Leclerc MY, Shen S, Lamb B (1997) Observations and large-eddy simulation modeling of footprints in the lower convective boundary layer. J Geophys Res Atmos 102(D8): 9323–9334. doi:10.1029/96JD03984 CrossRefGoogle Scholar
  27. Lee X, Hu X (2002) Forest-air fluxes of carbon, water and energy over non-flat terrain. Boundary-Layer Meteorol 103(2): 277–301. doi:10.1023/A:1014508928693 CrossRefGoogle Scholar
  28. Luhar AK, Britter RE (1989) A random walk model for dispersion in inhomogeneous turbulence in a convective boundary layer. Atmos Environ 23(9): 1911–1924. doi:10.1016/0004-6981(89)90516-7 CrossRefGoogle Scholar
  29. Markkanen T, Rannik U, Marcolla B, Cescatti A, Vesala T (2003) Footprints and fetches for fluxes over forest canopies with varying structure and density. Boundary-Layer Meteorol 106(3): 437–459. doi:10.1023/A:1021261606719 CrossRefGoogle Scholar
  30. Markkanen T, Steinfeld G, Kljun N, Raasch S, Foken T (2008) Footprint model performance under inhomogeneous flow conditions. In: 28th Conference on agricultural and forest meteorology, Orlando, FL, USA. American Meteorological Society, p 2.6Google Scholar
  31. Poggi D, Katul GG, Finnigan JJ, Belcher SE (2008) Analytical models for the mean flow inside dense canopies on gentle hilly terrain. Q J Roy Meteorol Soc 134(634): 1095–1112. doi:10.1002/qj.276 CrossRefGoogle Scholar
  32. Rannik U, Aubinet M, Kurbanmuradov O, Sabelfeld KK, Markkanen T, Vesala T (2000) Footprint analysis for measurements over a heterogeneous forest. Boundary-Layer Meteorol 97(1): 137–166CrossRefGoogle Scholar
  33. Markkanen T, Markkanen T, Raittila J, Hari P, Vesala T (2003) Turbulence statistics inside and over forest: influence on footprint prediction. Boundary-Layer Meteorol 109(2): 163–189. doi:10.1023/A:1025404923169 CrossRefGoogle Scholar
  34. Rotach MW, Gryning S-E, Tassone C (1996) A two-dimensional Lagrangian stochastic dispersion model for daytime conditions. Q J Roy Meteorol Soc 122(530): 367–389. doi:10.1002/qj.49712253004 CrossRefGoogle Scholar
  35. Schmid HP (1994) Source areas for scalars and scalar fluxes. Boundary-Layer Meteorol 67(3): 293–318. doi:10.1007/BF00713146 CrossRefGoogle Scholar
  36. Schmid HP (2002) Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agric For Meteorol 113(1–4): 159–183. doi:10.1016/S0168-1923(02)00107-7 CrossRefGoogle Scholar
  37. Schuepp PH, Leclerc MY, Macpherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorol 50(1–4): 353–373. doi:10.1007/BF00120530 Google Scholar
  38. Sogachev A, Rannik U, Vesala T (2004) Flux footprints over complex terrain covered by heterogeneous forest. Agric For Meteorol 127(3–4): 143–158. doi:10.1016/j.agrformet.2004.07.010 CrossRefGoogle Scholar
  39. Sogachev A, Leclerc MY, Karipot A, Zhang G, Vesala T (2005a) Effect of clearcuts on footprints and flux measurements above a forest canopy. Agric For Meteorol 133(1–4): 182–196. doi:10.1016/j.agrformet.2005.09.008 CrossRefGoogle Scholar
  40. Sogachev A, Panferov O, Gravenhorst G, Vesala T (2005b) Numerical analysis of flux footprints for different landscapes. Theor Appl Climatol 80(2–4): 169–185. doi:10.1007/s00704-004-0098-8 CrossRefGoogle Scholar
  41. Sorbjan Z (1986) On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol 34: 377–397. doi:10.1007/BF00120989 CrossRefGoogle Scholar
  42. Steinfeld G, Raasch S, Markkanen T (2008) Footprints in homogeneously and heterogeneously driven boundary layers derived from a Lagrangian stochastic particle model embedded into large-eddy simulation. Boundary-Layer Meteorol 129(2): 225–248. doi:10.1007/s10546-008-9317-7 CrossRefGoogle Scholar
  43. Stoughton TE, Miller DR, Yang XS, Hendrey GM (2000) Footprint climatology estimation of potential control ring contamination at the Duke Forest FACTS-1 experiment site. Agric For Meteorol 100(1): 73–82. doi:10.1016/S0168-1923(99)00077-5 CrossRefGoogle Scholar
  44. Thomson DJ (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J Fluid Mech 180: 529–556. doi:10.1017/S0022112087001940 CrossRefGoogle Scholar
  45. Vesala T, Kljun N, Rannik U, Rinne J, Sogachev A, Markkanen T, Sabelfeld K, Foken T, Leclerc MY (2008) Flux and concentration footprint modelling: state of the art. Environ Pollut 152(3): 653–666. doi:10.1016/j.envpol.2007.06.070 CrossRefGoogle Scholar
  46. Wang W (2009) The influence of thermally-induced mesoscale circulations on turbulence statistics over an idealized urban area under a zero background wind. Boundary-Layer Meteorol 131(3): 403–423. doi:10.1007/s10546-009-9378-2 CrossRefGoogle Scholar
  47. Wang W (2010) The influence of topography on single-tower-based carbon flux measurements under unstable conditions: a modeling perspective. Theor Appl Climatol 99(1): 125–138. doi:10.1007/s00704-009-0130-0 CrossRefGoogle Scholar
  48. Wang W, Davis KJ (2008) A numerical study of the influence of a clearcut on eddy-covariance fluxes of Co2 measured above a forest. Agric For Meteorol 148(10): 1488–1500. doi:10.1016/j.agrformet.2008.05.009 CrossRefGoogle Scholar
  49. Wang W, Davis KJ, Cook BD, Butler MP, Ricciuto DM (2006a) Decomposing Co2 fluxes measured over a mixed ecosystem at a tall tower and extending to a region: a case study. J Geophys Res Biogeosci 111(G2): G02005. doi:10.1029/2005jg000093 CrossRefGoogle Scholar
  50. Wang W, Davis KJ, Ricciuto DM, Butler MP (2006b) An approximate footprint model for flux measurements in the convective boundary layer. J Atmos Ocean Technol 23(10): 1384–1394. doi:10.1175/JTECH1911.1 CrossRefGoogle Scholar
  51. Wang W, Davis KJ, Yi C, Patton EG, Butler MP, Ricciuto DM, Bakwin PS (2007) A note on the top-down and bottom-up gradient functions over a forested site. Boundary-Layer Meteorol 124(2): 305–314. doi:10.1007/s10546-007-9162-0 CrossRefGoogle Scholar
  52. Weigel AP, Rotach MW (2004) Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley. Q J Roy Meteorol Soc 130(602): 2605–2627. doi:10.1256/qj.03.214 CrossRefGoogle Scholar
  53. Weil JC, Sullivan PP, Moeng C-H (2004) The use of large-eddy simulations in Lagrangian particle dispersion models. J Atmos Sci 61(23): 2877–2887. doi:10.1175/JAS-3302.1 CrossRefGoogle Scholar
  54. Whiteman CD (2000) Mountain meteorology: fundamentals and applications, vol xiii. Oxford University Press, New York, p 355Google Scholar
  55. Wilson JD, Flesch TK (1993) Flow boundaries in random-flight dispersion models: enforcing the well-mixed condition. J Appl Meteorol Climatol 32: 1695–1707. doi:10.1175/1520-0450(1993)032<1695:FBIRFD>2.0.CO;2 CrossRefGoogle Scholar
  56. Wilson JD, Sawford BL (1996) Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Boundary-Layer Meteorol 78(1): 191–210. doi:10.1007/BF00122492 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Plurality Solutions/EMC/NCEP/NOAACamp SpringsUSA
  2. 2.Federal Office for Meteorology and Climatology, MeteoSwissZurichSwitzerland
  3. 3.Institute for Meteorology and GeophysicsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations